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a b s t r a c t

By A(xn) = {∑∞
n=1 εnxn : εn = 0, 1} we denote the achievement set of the absolutely conver-

gent series
∑∞

n=1 xn. We study the relation between the achievement set of the series on the

plane and the achievement sets of its projection into two coordinates. We mainly focus on

the series
∑∞

n=1(xn, yn) where (xn) is a geometric series and yn = xσ (n) for some permutation

σ ∈ S∞.

If (xn) is a multigeometric sequence, then A(xn, xσ (n)) can be one of at least seven types of

sets, which are strongly related to three types of attainable achievement sets on the real line.

We conjecture that if (xn) multigeometric, then A(xn, xσ (n)) can be one of eight types – none of

them homeomorphic to the other one.

We prove a general fact on the Hausdorff dimension of the achievement set in Banach

spaces. As a corollary we obtain that if 0 < q ≤ 1/2, dimH(A(qn, qσ (n))) = dimH(A(xn)) =
−log 2/log q for some class of regular permutations σ ∈ S∞.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Suppose that x = (xn)∞
n=1

∈ �1 and let

A(x) =
{

∞∑
n=1

εnxn : (εn)
∞
n=1 ∈ {0, 1}N

}

denote the set of all subsums of the series
∑∞

n=1 xn, called

the achievement set (or a partial sumset) of x, see [7]. In 1914

Kakeya [8] initiated the study of topological properties of

achievement sets presenting the following result:

Theorem 1.1 (Kakeya). For any sequence x ∈ �1�c00

(1) A(x) is a perfect compact set.

(2) If |xn| > �i > n|xi| for almost all n, then A(x) is homeo-

morphic to the ternary Cantor set.
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(3) If |xn| ≤ �i > n|xi| for almost all n, then A(x) is a finite

union of closed intervals. In the case of non-increasing

sequence x, the last inequality is also necessary for A(x)

to be a finite union of intervals.

Kakeya conjecture was that A(x) is either nowhere dense

or a finite union of intervals. It was disproved by Weinstein

and Shapiro [14] and, independently, by Ferens [5]. Guthrie

and Nymann in [6] gave a simple example of sequence,

namely x =
(

5+(−1)n

4n

)∞

n=1
, such that its achievement set T =

A(x) contains an interval but it is not a finite union of inter-

vals. In the same paper the authors formulated the following

trichotomy for achievement sets, finally proved in Neymann

and Saenz [12]:

Theorem 1.2. For any sequence x ∈ �1�c00, A(x) is one of the

following sets:

(1) a finite union of closed intervals;

(2) homeomorphic to the ternary Cantor set;

(3) homeomorphic to the set T.
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The set T is homeomorphic to C ∪ ⋃∞
n=1 S2n−1, where Sn

denotes the union of the 2n − 1 open middle thirds which are

removed from [0, 1] at the nth step in the construction of

the ternary Cantor set C. Such sets are called Cantorvals. For-

mally, a Cantorval (more precisely, an M-Cantorval, see [9])

is a non-empty compact subset S of the real line, such that S

is the closure of its interior, and both endpoints of any infi-

nite component are accumulation points of one-point com-

ponents of S. A non-empty subset C of the real plane will be

called a Cantor set if it is compact, zero-dimensional and has

no isolated points.

Note that Theorem 1.2says that �1 can be divided into four

sets: c00 and the sets with properties prescribed in (1), (2) and

(3). Some algebraic and topological properties of these sets have

been recently considered in [2].

The sequence of the form (k1, k2, …, km, k1q, …, kmq, k1q2,

…) is called multigeometric sequence (see [3]) and it is de-

noted by (k1, k2, …, km; q). Note that Guthrie–Nymann se-

quence

(
5+(−1)n

4n

)∞

n=1
is a multigeometric series of the form

(3/4, 6/4; 1/4). If k1 = … = km, then by Kakeya Theorem A(k1,

k2, …, km; q) is either a Cantor set or an interval. As in Banakh

et al. [1] we denote by � the set{
m∑

n=1

knεn : (εn)
m
n=1 ∈ {0, 1}m

}
.

Let us write � as {τ 1 < … < τ s}. Then the one-dimensional

achievement set A(x) depends only on � and the ratio

q. We consider the following numbers connected with �:

diam(�) = τ s − τ 1, �(�) = max i < s(τ i + 1 − τ i) and I(�) =
�(�)/(�(�) + diam(�)). Moreover, we have |�| = s. It was

proved in Banakh et al. [1] that

(1) A is an interval if and only if q ≥ I(�).

(2) A is not a finite union of intervals if q < I(�) and �(�)

∈ {τ 2 − τ 1, τ s − τ s − 1}.

(3) A is a Cantor set of zero Lebesgue measure if q < 1/s.

For a metric space (X, ρ) by K(X ) we denote the hyper-

space of all non-empty compact subsets of X. There is a natu-

ral metric on K(X ), namely the Hausdorff distance given by

ρH(K, L) = inf{δ > 0 : L ⊂ B(K, δ) and K ⊂ B(L, δ)}
where K, L ∈ K(X ) and B(K, δ) = ⋃

x∈K B(x, δ) is a

δ-neighborhood of K. The iterated function system frac-

tal (in short IFS fractal) generated by the system of affine

contractions {f1, …, fn} is the unique fixed point of the

self-map K 	→ ⋃n
i=1 fi(K). For a positive real number s

and δ > 0 define Hs
δ
(F ) = inf{∑∞

n=1(diamAn)s : A1, A2, . . .

is a δ-cover of F} where δ-cover of F is a sequence A1,

A2, … of sets such that F ⊂ ⋃∞
n=1 An and diam(An) ≤ δ.

The s-dimensional Hausdorff outer measure is defined as

Hs(F ) = limδ→0 Hs
δ
(F ) = supδ>0 Hs

δ
(F ). It is well-known

that for a given Borel set F and for 0 < s < t, if Hs(F ) < ∞,

then Ht (F ) = 0, and if Ht (F ) > 0, then Hs(F ) = ∞. The

Hausdorff dimension dimH(F) of a Borel set F is a critical

value s0 ∈ [0, ∞], such that Hs(F ) = ∞ for all s < s0 and

Hs(F ) = 0 for all s > s0.

Nitecki at the end of his nice survey paper [13] on subsum

sets wrote: ”One might also be tempted to ask about the anal-

ogous question for null sequences in the complex plane (or

more generally points in R
n). In this context (...) the analysis

of translations will be made more complicated by the need to

consider directions as well as distances. Who knows where

that might lead?” Following this suggestion we start investi-

gation of multidimensional achievement sets - its topological

and geometric properties.

The aim of our paper is to study the properties of the

achievement sets on the plane. Let (xn, yn) ∈ �1 × �1. By

A(xn, yn) :=
{

∞∑
n=1

εn(xn, yn) : (εn)
∞
n=1 ∈ {0, 1}N

}

we denote the achievement set of the series
∑∞

n=1(xn, yn).

The main and the most general question we are interested in,

is the following:

Problem 1.3. Let xn, yn ∈ �1 be such that A(xn) = C1 and A(yn)

= C2. What can be said about A(xn, yn)?

Achievement sets of series in R
n were studied by Morán in

[10] and [11]. In Morán [10] a series
∑∞

i=1 xi is called fractal se-

ries if A(xi) has cardinality continuum (equivalently (xi) �∈c00)

and it has n-dimensional Lebesgue measure zero. The author

has given some sufficient conditions for series
∑∞

i=1 xi being

a fractal series. Each of them implies that
∑∞

i=1 xi is quickly

convergent, which means ‖xi‖ > �k > i‖xk‖ for almost every

i, which is a Kakeya type condition. Morán has estimated, and

in some cases precisely calculated, the Hausdorff dimension

of the achievement sets.

It is easy to observe that, as in one-dimensional case, the

achievement set on the plane is a compact perfect set (or fi-

nite set if elements of underlying series are eventually zero).

Moreover, the set A(xn, yn) is contained in C1 × C2 – the Carte-

sian product of achievement sets of (xn) and (yn), and A(xn,

yn) is symmetric with respect to the middle point of C1 × C2.

Thus if A(xn) and A(yn) are Cantor sets, so is A(xn, yn).

If A(xn) = C, then A(xn, xn) =
√

2R π
4
(C) where R π

4
is the

anticlockwise rotation around the origin at an angle of π
4 .

On the other hand if one add zeros to the series xn, then

the one-dimensional achievement set remains unchanged. In

particular

A(x1, 0, x2, 0, x3, 0, . . . ) = A(0, x1, 0, x2, 0, x3, . . . )

= A(x1, x2, x3, . . . ) = C

and

A((x1, 0), (0, x1), (x2, 0), (0, x2), (x3, 0), (0, x3), . . . )

= C × C.

This simple observation shows that to get something in-

teresting we need to make some restrictions on the se-

quence (xn, yn). We will deal with the following more specific

question.

Problem 1.4. Let xn > 0 for every n ∈ N. Assume that A(xn) =
C. What can be said about A(xn, xσ (n)) where σ ∈ S∞?

In this paper we will consider even more specific sit-

uation. Namely we will consider the case when the series∑∞
n=1 xn is a geometric or multigeometric series and we will

restrict our attention to permutations σ ∈ S∞ which are

quite regular. For q ∈ (0, 1) the series
∑∞

n=1(qn, qσ (n)) will
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