
Short communication

A derivation of the Maxwell–Cattaneo equation from the
free energy and dissipation potentials

Martin Ostoja-Starzewski *

Department of Mechanical Science and Engineering, Institute for Condensed Matter Theory, Beckman Institute University
of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

a r t i c l e i n f o

Article history:
Received 13 November 2008
Received in revised form 5 March 2009
Accepted 9 March 2009
Available online 22 April 2009

Communicated by K.R. Rajagopal

Keywords:
Maxwell1–Cattaneo equation
Heat conduction
Thermodynamics
Second sound

a b s t r a c t

A thermodynamic derivation is presented of the Maxwell–Cattaneo equation involving a
material time, instead of a partial time, derivative of heat flux. The Ansatz is given by
the functionals of free energy and dissipation potentials, relying on an extended state space
and a representation theory of Edelen.

� 2009 Elsevier Ltd. All rights reserved.

Recently, Christov and Jordan [1] have shown that the Maxwell–Cattaneo equation governing the propagation of second
sound should involve a material time derivative of heat flux ð _q � Dq=DtÞ instead of a partial time derivative ðoq=otÞ. That is,
supposing we look at a one-dimensional (1-D) setting, this equation should read

qþ t0
Dq
Dt
¼ �kh;x; ð1Þ

where h is the absolute temperature, t0 is the relaxation time, and k is the thermal conductivity.
A question arises: Can (1) be justified by thermodynamics directly? In particular, can it be derived from two functionals

playing roles of potentials: the free energy w and the dissipation function /? It turns out that this cannot be done using the
thermodynamic orthogonality within the framework of thermodynamics with internal variables (TIV) [2], even when the
thermodynamic state space is extended to include the heat flux or another quantity (e.g. the temperature rate). It is under-
stood [3] that an extension of that type is needed, but, to the best of our knowledge, a derivation has not yet been published.
Interestingly, while extended thermodynamics readily involves broader state spaces than other theories, the equation we
typically see there (e.g. [4]) involves a partial derivative of q:

qþ t0
oq
ot
¼ �kh;x: ð2Þ

Consistent with the said extension, we assume the (specific, per unit mass) internal energy u to be a function of the strains
Eij, the entropy g and the heat flux qi
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u ¼ eðEij;g; qiÞ ð3Þ

and the (specific, per unit mass) dissipation / to be a function of the heat flux and possibly its rate:

/ ¼ /ðqi; _qiÞ: ð4Þ

We are focusing on a rigid conductor, so that in the above we do not need to admit other fluxes or velocities.
Now, whether we use TIV or a rational thermodynamics approach, in 3-D we obtain the Clausis–Duhem inequality in the

form

�qih;i
h
� ow

oqi

_qi P 0: ð5Þ

Clearly, this may be written as

Y � v P 0; ð6Þ

where

Y ¼ �$h
h
;�$qw

� �
ð7Þ

is a vector of dissipative thermodynamic forces, and

v ¼ q; _qð Þ ð8Þ

is a vector of conjugate thermodynamic velocities. In (7) $q stands for the gradient in the space of heat flux q. See also in [3,
pp. 73–74].

A general procedure based on the representation theory due to Edelen [5–7] allows a derivation of the most general form
of the constitutive relation either for v as a function of Y or for Y as a function of v, subject to (6). If we are to pursue the
second alternative, the following steps are involved: Assume Y to be a function of v, and determine it as

Y ¼ $v/þ U; or Yi ¼
o/
ov i
þ Ui; ð9Þ

where the vector U ¼ ðu1;u2Þ does not contribute to the entropy production

U � v ¼ 0; ð10Þ

while the dissipation function is

/ ¼
Z 1

0
v � YðsvÞds ð11Þ

and U is uniquely determined, for given Y, by

Ui ¼
Z 1

0
sv j

oYiðsvÞ
ov j

� oYjðsvÞ
ov i

� �
ds with

o YiðsvÞ � Ui½ �
ov j

¼
o YjðsvÞ � Uj
� �

ov i
: ð12Þ

The symmetry relations (12)2 reduce to the classical Onsager reciprocity conditions

oYiðsvÞ
ov j

¼ oYjðsvÞ
ov i

ð13Þ

if and only if U ¼ 0.
Focusing first on the 1-D case (with v becoming ðq; _qÞ), the simplest U satisfying (10) is

U1 ¼
kt0

h
_q; U2 ¼ �

kt0

h
q; ð14Þ

whereby the dissipation function is a quadratic form

/ðvÞ � /ðq; _qÞ ¼ 1
2h

kq2 þ 1
2

G _q2: ð15Þ

On account of (9), we obtain

� h;x
h
� Y1 ¼

kq
h
þ U1 ¼

k
h

qþ kt0

h
_q;

� ow
oq
� Y2 ¼ G _qþ U2 ¼ G _q� kt0

h
q:

ð16Þ

Now, observe:
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