Short communication

A derivation of the Maxwell-Cattaneo equation from the free energy and dissipation potentials

Martin Ostoja-Starzewski *
Department of Mechanical Science and Engineering, Institute for Condensed Matter Theory, Beckman Institute University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

A R T I CLE INFO

Article history:

Received 13 November 2008
Received in revised form 5 March 2009
Accepted 9 March 2009
Available online 22 April 2009
Communicated by K.R. Rajagopal

Keywords:

Maxwell1-Cattaneo equation
Heat conduction
Thermodynamics
Second sound

Abstract

A thermodynamic derivation is presented of the Maxwell-Cattaneo equation involving a material time, instead of a partial time, derivative of heat flux. The Ansatz is given by the functionals of free energy and dissipation potentials, relying on an extended state space and a representation theory of Edelen.

© 2009 Elsevier Ltd. All rights reserved.

Recently, Christov and Jordan [1] have shown that the Maxwell-Cattaneo equation governing the propagation of second sound should involve a material time derivative of heat flux $(\dot{q} \equiv D q / D t)$ instead of a partial time derivative $(\partial q / \partial t)$. That is, supposing we look at a one-dimensional (1-D) setting, this equation should read

$$
\begin{equation*}
q+t_{0} \frac{D q}{D t}=-k \theta_{, \chi} \tag{1}
\end{equation*}
$$

where θ is the absolute temperature, t_{0} is the relaxation time, and k is the thermal conductivity.
A question arises: Can (1) be justified by thermodynamics directly? In particular, can it be derived from two functionals playing roles of potentials: the free energy ψ and the dissipation function ϕ ? It turns out that this cannot be done using the thermodynamic orthogonality within the framework of thermodynamics with internal variables (TIV) [2], even when the thermodynamic state space is extended to include the heat flux or another quantity (e.g. the temperature rate). It is understood [3] that an extension of that type is needed, but, to the best of our knowledge, a derivation has not yet been published. Interestingly, while extended thermodynamics readily involves broader state spaces than other theories, the equation we typically see there (e.g. [4]) involves a partial derivative of q :

$$
\begin{equation*}
q+t_{0} \frac{\partial q}{\partial t}=-k \theta, x \tag{2}
\end{equation*}
$$

Consistent with the said extension, we assume the (specific, per unit mass) internal energy u to be a function of the strains $E_{i j}$, the entropy η and the heat flux q_{i}

[^0]\[

$$
\begin{equation*}
u=e\left(E_{i j}, \eta, q_{i}\right) \tag{3}
\end{equation*}
$$

\]

and the (specific, per unit mass) dissipation ϕ to be a function of the heat flux and possibly its rate:

$$
\begin{equation*}
\phi=\phi\left(q_{i}, \dot{q}_{i}\right) \tag{4}
\end{equation*}
$$

We are focusing on a rigid conductor, so that in the above we do not need to admit other fluxes or velocities.
Now, whether we use TIV or a rational thermodynamics approach, in 3-D we obtain the Clausis-Duhem inequality in the form

$$
\begin{equation*}
-\frac{q_{i} \theta_{, i}}{\theta}-\frac{\partial \psi}{\partial q_{i}} \dot{q}_{i} \geqslant 0 \tag{5}
\end{equation*}
$$

Clearly, this may be written as

$$
\begin{equation*}
\mathbf{Y} \cdot \mathbf{v} \geqslant 0 \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{Y}=\left(-\frac{\boldsymbol{\nabla} \theta}{\theta},-\nabla_{\mathbf{q}} \psi\right) \tag{7}
\end{equation*}
$$

is a vector of dissipative thermodynamic forces, and

$$
\begin{equation*}
\mathbf{v}=(\mathbf{q}, \dot{\mathbf{q}}) \tag{8}
\end{equation*}
$$

is a vector of conjugate thermodynamic velocities. In (7) $\boldsymbol{\nabla}_{\mathbf{q}}$ stands for the gradient in the space of heat flux \mathbf{q}. See also in [3, pp. 73-74].

A general procedure based on the representation theory due to Edelen [5-7] allows a derivation of the most general form of the constitutive relation either for \mathbf{v} as a function of \mathbf{Y} or for \mathbf{Y} as a function of \mathbf{v}, subject to (6). If we are to pursue the second alternative, the following steps are involved: Assume \mathbf{Y} to be a function of \mathbf{v}, and determine it as

$$
\begin{equation*}
\mathbf{Y}=\nabla_{\mathbf{v}} \phi+\mathbf{U}, \text { or } \quad Y_{i}=\frac{\partial \phi}{\partial v_{i}}+U_{i} \tag{9}
\end{equation*}
$$

where the vector $\mathbf{U}=\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$ does not contribute to the entropy production

$$
\begin{equation*}
\mathbf{U} \cdot \mathbf{v}=0 \tag{10}
\end{equation*}
$$

while the dissipation function is

$$
\begin{equation*}
\phi=\int_{0}^{1} \mathbf{v} \cdot \mathbf{Y}(\tau \mathbf{v}) d \tau \tag{11}
\end{equation*}
$$

and \mathbf{U} is uniquely determined, for given \mathbf{Y}, by

$$
\begin{equation*}
U_{i}=\int_{0}^{1} \tau v_{j}\left[\frac{\partial Y_{i}(\tau \mathbf{v})}{\partial v_{j}}-\frac{\partial Y_{j}(\tau \mathbf{v})}{\partial v_{i}}\right] d \tau \quad \text { with } \frac{\partial\left[Y_{i}(\tau \mathbf{v})-U_{i}\right]}{\partial v_{j}}=\frac{\partial\left[Y_{j}(\tau \mathbf{v})-U_{j}\right]}{\partial v_{i}} . \tag{12}
\end{equation*}
$$

The symmetry relations $(12)_{2}$ reduce to the classical Onsager reciprocity conditions

$$
\begin{equation*}
\frac{\partial Y_{i}(\tau \mathbf{v})}{\partial v_{j}}=\frac{\partial Y_{j}(\tau \mathbf{v})}{\partial v_{i}} \tag{13}
\end{equation*}
$$

if and only if $\mathbf{U}=\mathbf{0}$.
Focusing first on the 1-D case (with \mathbf{v} becoming (q, \dot{q})), the simplest \mathbf{U} satisfying (10) is

$$
\begin{equation*}
U_{1}=\frac{\lambda t_{0}}{\theta} \dot{q}, \quad U_{2}=-\frac{\lambda t_{0}}{\theta} q, \tag{14}
\end{equation*}
$$

whereby the dissipation function is a quadratic form

$$
\begin{equation*}
\phi(\mathbf{v}) \equiv \phi(q, \dot{q})=\frac{1}{2 \theta} \lambda q^{2}+\frac{1}{2} G \dot{q}^{2} . \tag{15}
\end{equation*}
$$

On account of (9), we obtain

$$
\begin{align*}
& -\frac{\theta, x}{\theta} \equiv Y_{1}=\frac{\lambda q}{\theta}+U_{1}=\frac{\lambda}{\theta} q+\frac{\lambda t_{0}}{\theta} \dot{q}, \\
& -\frac{\partial \psi}{\partial q} \equiv Y_{2}=G \dot{q}+U_{2}=G \dot{q}-\frac{\lambda t_{0}}{\theta} q . \tag{16}
\end{align*}
$$

Now, observe:

https://daneshyari.com/en/article/825484

Download Persian Version:

https://daneshyari.com/article/825484

Daneshyari.com

[^0]: * Tel.: +1 2172650900.

 E-mail address: martinos@illinois.edu

