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In this note, we investigate the number of the strict return trajectory types with order n which
are turbulent of interval mappings and show that the probability that a strict return trajectory
type with order n is turbulent converges to 1 as n goes to infinity.
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1. Introduction

Throughout, denote by C(I) the set of continuous self-
mappings on an interval I of the real line. Let f ¢ C9(I) and
sequence Pp = (Xg,X1,X3,...,Xn) of points in [ with x; =
f(x;_q) for every 1 <i < n. Py is said to be a return trajec-
tory of fwith order n if x; < xg < xn (orx; <X <x7) (see [6]).
Pn is said to be a positively (resp. negatively) strict return tra-
jectory, shortly written PSRT (resp. NSRT), of f with order n if
X; <Xg <Xpforevery 1 <i<n-—1(resp.x, < xq < x; for ev-
eryl <i<n-1).1fx; <xy =x, forevery1 <i<n—1(resp.
Xn =Xg < x; for every 1 <i <n— 1), then P, is said to be a
periodic orbit of f with period n.
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In 1964, Sharkovskii found the following order relation in
the set N of the natural numbers

3>~5-7>...>3.2-5.2>7-2>
0 »3.22-5.22-7.22 >
=32k 5.0k 7.0k s 2k
2452302200401

and obtained the following theorem.

Theorem 1.1 (Sharkovskii’s theorem, see [7]). Let fe CO(I). For
any m, n € N with n = m, if f has a periodic orbit with period n,
then f has a periodic orbit with period m. Moreover, for every k,
there exists a mapping f € C°(I) that has a periodic orbit with
period k but does not have any periodic orbit with period j for
anyj > k.

Definition 1.2 (see [3,4]). f e C°(I) is said to be turbulent if
there exist a, b, ¢, d e [with a < b < ¢ < d such that f{[a, b]) N
flc d]) o [a, d].
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Remark 1.3. It follows from [3] that if f € C°(I) is turbulent,
then Card({x € I : f(x) = x}) > 2, where Card(A) denotes the
cardinality of the set A.

It is well known that turbulence plays an important role
in one dimensional dynamics since the relation between tur-
bulence and the existence of periodic orbits. In [3], Block and
Coppel showed that if f e C°(I) and f™ is turbulent for some m
e N, then f™ has periodic orbits of all periods and fis chaotic.
In [1], Blokh showed that if f € C°(I) is turbulent, then for any
m, n € N with m < n, f has a periodic orbit P with rotation
pair (m, n), where n is the period of P and m = Card({y < P:
fy) < y}. In [2], Blokh and Misiurewicz showed that if f ¢
CO(I) is turbulent, then for any m, n € N with 2m < n, f has
a periodic orbit P with over-rotation pair (m, n), where n is
the period of P and 2m = Card({y € P: (f(¥) —y)(f?(y) —
f) <0p.

Let  Pn=(X0.X1.X2,....%n) ={yn-1 <+~ <y1 <Yo =
Xo <Yn=2Xn} (resp. {yn=2X1 <Yo=2X0 <Y1 <--<Yn1})
be a PSRT (resp. NSRT) of f with order n. Define map
7:{0,1,...,n-1} —{1,2,...,n} by wk)=j if
f) =y;. From elementary combinatorics there are
(n—1)! PSRT (resp. NSRT) types with order n. We say that a
SRT type is turbulent if every f € CO(I) with a SRT of that type
is turbulent.

In this note, we study the methods that calculates the
number of the strict return trajectory types with order n
which are turbulent and obtain the following theorem.

Theorem 1.4. Let P(n) be the number of PSRT (resp. NSRT) types
with order n which are turbulent. Then lim,_, o % =1.

Remark 1.5. Theorem 1.4 implies that the probability that
a strict return trajectory type with order n is turbulent con-
verges to 1 as n goes to infinity. Using a computer program to
test a million of the 15! PSRT (resp. NSRT) types with order
16, 99.9% of them are turbulent.

2. The number of SRT types with order
n which are turbulent

In this section, we study the methods that calculates the
number of the strict return trajectory types with order n
which are turbulent and show the main results. We first show
the following lemmas.

Lemma 2.1. Let fe CO(I) and Py = (X9, X1, Xa, ..., Xn) be a SRT
of f. If there exist x; < x;j with i, j € {0,1,..., n — 1} such that
F(i) = X1 < X < Xj < Xjq = f(x;), then fis turbulent.

Proof. We may assume without loss of generality that
Xn < Xg < X1, Pa N (x;,X;) =@ and p=max{x € [x;, ;] : x =
f(x)}. Set k=min{r > j+1:x- <p}. Then k> j+2 and
Xg_1 > D- Write s=min{j <r<k—1:x >x;_1}. Then s >
1 and p<x_1 <xq with f([p,x_1]) N flxs-1,%1]) D
[P, X,_1]. The proof is completed. O

From Lemma 21 we see that if there exist
i,jef{0,1,...,n—1} such that 7(i) < i < j < 7(j),
then & is turbulent. On the other hand, for a PSRT
type (resp. NSRT type) m with order n, if there exists
kef0,1,..., n—2} such that 7(j) < j for any 0 < j <
k and j < m(j) for any k+1<j<n—-1 (resp. j < 7(j)

forany 0 <j < kand n(j) <jforany k+1<j<n-1)
then 7 is not turbulent. In fact, we can construct a
mapping feCo([1-n,1]) (resp. geCo(-1,n—-1]))
satisfying

(i) f(=i)=-m (i) ifie{0,1,...,n—1} with 7 (i) # n and
f(=)y=1if w(i)=n. gi)=m() ifie{0,1,...,n -1}
with (i) #nand g(i) = -1 if r (i) =n.

(ii) f|[—i, —i+ 1] is linear forie {1,..., n—1}and f|[0,1] =
7 (0). g|[i,i+1] is linear for i< {0,1,...,n—2} and
gl[-1,0] = 7 (0).

It is easy to show that f(resp. g) is a PSRT type (resp. NSRT
type) w with order n, but Card({x: f(x) = x}) =Card({x :
g(x) =x}) = 1. Which implies that 7 is not turbulent (see
Remark 1.3).

In the following, we only study the number of the NSRT
types with order n which are not turbulent. Denote by (k)
the number of the NSRT types 7 with order n which are not
turbulent with k = min{r : 7 (r) < r} and by uy(i, k) the num-
ber of the NSRT types 7= with order n which are not turbulent
with k = min{r : 7 (r) < rand 7 (0) = i}.

Lemma 2.2. Forany 1 <r <k — 1, we have
r . .
tn (1, K) = 3 (=1)1C gk — ). (21)
i=1

Proof. If r =1, then
Up(1,k) = ttp_q (k= 1) = (=1)°Cuy_1 (k — 1).

Assume that (2.1) holds for 1 < r < k — 1. That is

n-1 r
Dotk =1) = un(r k) =Y (=17 jun i (k —1).
i=r i=1

Then

n—-1

Un(r+1,k) =Y "ty q (i, k= 1) =ty (r. k= 1)

i=r

=Up(r,k) —up_1(r,.k—1)

= Y (=), (k- )
i=1

=Y (=D Uik =1 1)
i1

r+1 ) )
= 2 DTG gk — ).

i=1
The proof is completed. O

Write S, (k) = Zf;ll un(i, k). It follows from Lemma 2.2
that

k-1 i
Sa(k) = >3 (-1 up_ k= )

i=1 j=1

k-1 ) )
= S (=DFCup ik — i)
i=1



Download English Version:

https://daneshyari.com/en/article/8254845

Download Persian Version:

https://daneshyari.com/article/8254845

Daneshyari.com


https://daneshyari.com/en/article/8254845
https://daneshyari.com/article/8254845
https://daneshyari.com

