
Chaos, Solitons and Fractals 77 (2015) 190–204

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier.com/locate/chaos

Stochastic response of a class of self-excited systems with

Caputo-type fractional derivative driven by Gaussian white

noise

Yongge Yang a, Wei Xu a,∗, Xudong Gu b, Yahui Sun c

a Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, PR China
b Department of Engineering Mechanics, Northwestern Polytechnical University, Xi’an 710129, PR China
c State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, PR China

a r t i c l e i n f o

Article history:

Received 28 January 2015

Accepted 23 May 2015

a b s t r a c t

The stochastic response of a class of self-excited systems with Caputo-type fractional deriva-

tive driven by Gaussian white noise is considered. Firstly, the generalized harmonic function

technique is applied to the fractional self-excited systems. Based on this approach, the original

fractional self-excited systems are reduced to equivalent stochastic systems without fractional

derivative. Then, the analytical solutions of the equivalent stochastic systems are obtained by

using the stochastic averaging method. Finally, in order to verify the theoretical results, the

two most typical self-excited systems with fractional derivative, namely the fractional van der

Pol oscillator and fractional Rayleigh oscillator, are discussed in detail. Comparing the analyt-

ical and numerical results, a very satisfactory agreement can be found. Meanwhile, the effects

of the fractional order, the fractional coefficient, and the intensity of Gaussian white noise on

the self-excited fractional systems are also discussed in detail.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The last few decades have witnessed a dramatic devel-

opment in the research of the fractional calculus partly be-

cause of its powerful potential applications in various fields:

mechanics, control, biology, chemistry, acoustics, finance, so-

cial sciences and especially viscoelastic materials. More and

more facts [1–9] show that the fractional-order models can

make a more accurate description and give a deeper in-

sight into the inherent nature of realistic physical systems.

Thus, many researchers devote themselves to the theoreti-

cal analysis and practical application of fractional calculus.

A rich variety of excellent books, review articles, papers and
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monographs dealing with fractional calculus and its applica-

tion are available [4,8–18].

Because the random factors are ubiquitous in the practi-

cal world, it is necessary to study the stochastic systems with

fractional derivative. In order to obtain the approximately

analytical solution of fractional stochastic systems, a lot of

effective approaches have been used by many researchers.

The stochastic averaging method which is a versatile and

powerful approximate approach has been used by lots of au-

thors. Specifically, Huang and Jin [19] utilized the stochastic

averaging method to get the stochastic response and sta-

bility of a SDOF stochastic system with fractional derivative

damping driven by Gaussian white noise; Chen and Zhu

studied the stationary responses [20], stochastic jump and

bifurcation [21], stochastic stability [22] and first passage

failure [23,24] of stochastic oscillators endowed with frac-

tional derivative damping; Hu and Zhu [25,26] examined the

stochastic optimal control of quasi-integrable Hamiltonian
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systems endowed with fractional derivative damping; Xu

and Yang [27] studied the stochastic response of stochastic

system endowed with Caputo-type fractional derivative

damping driven by Gaussian white noise excitation by

using the stochastic averaging method. Xu and Zhang [28]

discussed the stationary response of Duffing–Rayleigh sys-

tem with fractional derivative under Gaussian white noise

excitation. There are many other techniques to address

the stochastic fractional systems except for the stochastic

averaging method. Spanos and Zeldin [29] put forward a

frequency-domain method for the stochastic systems en-

dowed with fractional derivatives. Based on the machinery

of the Wiener path integral, Di Matteo et al. [30] developed a

new approximate analytical technique to determine the non-

stationary response probability density function of stochastic

oscillators with fractional derivatives term. Agrawal [31] pro-

posed an analytical approach for stochastic dynamic systems

with fractional derivative by using the eigenvector expan-

sion method and Laplace transforms. Di Paola et al. [32]

numerically investigated the stochastic response of a linear

viscoelastic system under stationary and non-stationary ran-

dom excitations by discretizing the fractional derivative op-

erator and increasing the system dimension, in which the key

idea has been utilized by Failla and Pirrotta [33] to estimate

the stochastic response of fractionally damped Duffing oscil-

lators subjected to a stochastic input. Xu and Li [34,35] put

forward a new approach combining the L–P method and the

multiple-scale method to obtain the response of stochastic

oscillator with fractional derivative. Liu [36] investigated the

principal resonance responses of SDOF systems with small

fractional derivative damping subjected to narrow-band ran-

dom parametric excitation by using multiple scale method.

When establishing concrete mathematical models by

using the fractional order derivative, researchers are always

confronted with two alternatives, namely the Riemann–

Liouville definition and the Caputo definition. The reason

why we use the Caputo definition in this paper instead of

Riemann–Liouville definition is the convenience to obtain

the initial conditions. However, many references [19–26],

obtaining the approximate analytical solution by using

stochastic averaging method, mainly adopt the Riemann–

Liouvill definition instead of Caputo definition. Because of the

difference between Caputo definition and Riemann–Liouvill

definition, the process obtaining the approximate analytical

solution is also different. So, when using the stochastic

averaging method, it is necessary to study the stochastic

systems endowed with Caputo-type fractional derivative.

Bearing these ideas in mind, this paper is organized as fol-

lows. In Section 2, the generalized harmonic function tech-

nique is applied to the fractional self-excited systems. Based

on this approach, the original fractional self-excited systems

are reduced to the equivalent stochastic systems without

fractional derivative. In Section 3, the analytical solutions of

the equivalent stochastic systems are obtained by using the

stochastic averaging method. In Section 4, an effective algo-

rithm for the solution of initial value problems with Caputo-

type fractional derivative is briefly presented. In Section 5, in

order to verify the theoretical results, the two most typical

self-excited systems with fractional derivative, namely the

fractional van der Pol oscillator and the fractional Rayleigh

oscillator, are discussed in detail.

2. Equivalent stochastic system

Consider a class of self-excited oscillators with fractional

derivative and subjected to a weak random fluctuation. The

motion of the system is governed by the following equation:

ẍ(t) + εβ1Dαx(t) + εβ2 f (x, ẋ)ẋ + ω2x = W (t)

0 < α < 1
(1)

where ɛ is a small positive parameter, β1, β2

and ω are constant coefficients, W(t) is a station-

ary Gaussian white noise with correlation function

E[W (t)W (t + τ )] = 2Dδ(τ ), f (x, ẋ) is a function of x and

ẋ, f (x, ẋ) =
{

x2 − c for the fractional van der Pol oscillator

ẋ2 − c for the fractional Rayleigh oscillator
.

There are many definitions for the existence of a frac-

tional derivative. In this paper, the Caputo-type fractional

derivative is adopted:

Dαx(t) = 1

�(1 − α)

∫ t

0

ẋ(u)

(t − u)
α du (2)

in which α is the fractional order.

According to Refs. [20,37,38], the term associated with

fractional derivative not only serves as classical damping

force, but also contributes to the restoring force. Based on the

generalized harmonic function technique [20], this term can

be replaced by the following force containing a linear restor-

ing force and a linear damping force:

Dαx(t) = C(α)ẋ(t) + K(α)x(t) (3)

In order to calculate C(α) and K(α), we first introduce two

following formulae:

lim
T→∞

∫ T

0

sin(ωt)

tα
= ωα−1�(1 − α) cos

απ

2
(4)

lim
T→∞

∫ T

0

cos(ωt)

tα
= ωα−1�(1 − α) sin

απ

2
(5)

When ɛ is a small positive parameter and W(t) represent

weakly external random excitation, the response of system

(1) can be seen as random spread of periodic solutions of the

conservative nonlinear ẍ(t) + g(x) = 0 around the trivial so-

lution (0, 0) in phase plane (x, ẋ). Thus, we can assume the

solution of system (1) has the following form

X = x(t) = A(t) cos 
′(t)

Y = ẋ(t) = −A(t)ω sin 
′(t)


′(t) = ωt + �′(t)

(6)

First, we present the detail derivation procedure for C(α).

C(α) = − 1

πAω

∫ 2π

0

Dα(A cos 
′) sin 
′d
′

= 2

�(1 − α)
lim

T→∞
1

T

∫ T

0

×
{[∫ t

0

sin (ωu + 
′)
(t − u)

α du

]
sin (ωt + 
′)

}
dt (7)
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