
Chaos, Solitons and Fractals 77 (2015) 230–234

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier.com/locate/chaos

Mutual punishment promotes cooperation in the spatial public

goods game

Han-Xin Yang a,∗, Zhihai Rong b,c,d

a Department of Physics, Fuzhou University, Fuzhou 350108, PR China
b CompleX Lab, Web Sciences Center University of Electronic Science and Technology of China, Chengdu 610054, China
c Department of Automation, Donghua University, Shanghai 201620, PR China
d Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

a r t i c l e i n f o

Article history:

Received 3 February 2015

Accepted 3 June 2015

Available online 22 June 2015

PACS:

02.50.Le

87.23.Kg

87.23.Ge

Keywords:

Cooperation

Public goods game

Punishment

a b s t r a c t

Punishment has been proved to be an effective mechanism to sustain cooperation among self-

ish individuals. In previous studies, punishment is unidirectional: an individual i can punish j

but j cannot punish i. In this paper, we propose a mechanism of mutual punishment, in which

the two individuals will punish each other if their strategies are different. Because of the sym-

metry in imposing the punishment, one might expect intuitively the strategy to have little

effect on cooperation. Surprisingly, we find that the mutual punishment can promote cooper-

ation in the spatial public goods game. Other pertinent quantities such as the time evolution

of cooperator density and the spatial distribution of cooperators and defectors are also inves-

tigated.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cooperation is widely existent in human society and

animal world [1]. Understanding and searching for mech-

anisms that can generate and sustain cooperation among

selfish individuals remains to be an interesting problem.

Evolutionary game theory represents a powerful mathemat-

ical framework to address this problem [2]. Various game

models have been introduced, among which the public goods

game (PGG) has been a prevailing paradigm [3]. Due to

the rapid development of complex networks [4], the PGG

and other evolutionary game models have been extensively

studied in various kinds of structured populations [5,6], in-

cluding regular lattices [7–16], small-world networks [17],
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scale-free networks [18–24], dynamic networks [25–28], and

interdependent networks [29].

Both theoretical [30–38] and experimental [39–44] stud-

ies have shown that punishment is an effective way to en-

force cooperative behavior in spatial evolutionary games.

Traditionally, punisher are cooperators or, alternatively, of

defectors [34,38]. Those that are punished bear a fine while

the punishers usually bear a cost of punishment [45]. In pre-

vious studies, objects of punishment are individuals who

hold a specific strategy (usually is deemed to be defection).

However, the punished strategy may not be fixed but de-

pends on the surrounding environment, e.g., on neighbors’

strategies. Psychological experiments have demonstrated

that, an individual tends to coincide with others in behavior

or opinion [46]. There is a psychological or financial punish-

ment of dissent, with humans trying to attain social confor-

mity modulated by peer pressure [46–48].

Based on the above consideration, we propose a mech-

anism of punishment in which an individual will punish

neighbors (no matter cooperators or defectors) who hold
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the opposite strategy. Unlike in previous models where ad-

ditional strategies of punishment are introduced, there are

only two strategies (pure cooperators and pure defectors) in

our model. The punishment is mutual in our model, that is,

an individual i who punishes individual j is also punished by j.

Thus, the cost of punishment can be absorbed into the pun-

ishment fine. Because of this symmetry at the individual or

“microscopic” level, intuitively one may expect the punish-

ment not to have any effect on cooperation. Surprisingly, we

find that symmetric punishment can lead to enhancement of

cooperation in the spatial PGG.

2. Model

Our model is described as follows.

Players are located on a L × L square lattice with periodic

boundary conditions. Every player occupies a lattice point

and has four neighboring points. Each player i participates

in five PGG groups sponsored by i and its four neighbors re-

spectively. A PGG group is composed of a sponsor and its four

neighbors. Thus the size of each PGG group is five.

At each time step, every cooperator (denoted by C) con-

tributes a total unit cost shared equally by five involved PGG

groups. Defectors (denoted by D) invest nothing. The total

cost of a group is multiplied by a factor, and is then redis-

tributed uniformly to all the five players in this group. We

denote i’s strategy as si = 1 for cooperation and si = 0 for de-

fection. The payoff that player i gains from the group spon-

sored by player j is

pi, j = − si

5
− α|si − s j| + r

5

5∑

x=0

sx, (1)

where x = 0 stands for player j, x > 0 represent the neighbors

of j, r is the multiplication factor, and α is the punishment

fine. The total payoff of the player i is calculated by

Pi =
∑

jε�i

pi, j, (2)

where �i denotes the community of neighbors of i and itself.

Initially, cooperators and defectors are randomly dis-

tributed with the equal probability 0.5. After each time

step, all individuals synchronously update their strategies

as follows. Each individual i randomly chooses a neighbor

j and adopts the neighbor j’s strategy with the probability

[49]:

W (si ← s j) = 1

1 + exp[(Pi − Pj)/K]
, (3)

where K characterizes the noise introduced to permit irra-

tional choices.

3. Results

We assume that players occupy nodes on a 100 × 100

square lattice and the noise K = 0.1. The key quantity for

characterizing the cooperative behavior of the system is the

fraction of cooperators ρc in the steady state. In all simula-

tions below, ρc is obtained by averaging over the last 2000

time steps of the entire 30,000 time steps. Each data are ob-

tained by averaging over 200 different realizations.

Fig. 1. The fraction of cooperators ρc as a function of the multiplication

factor r for different values of the punishment fine α. For each value of α,

ρc increases with r.

Fig. 2. The fraction of cooperators ρc as a function of the punishment fine

α for different values of the multiplication factor r. For each value of r, ρc

increases with α.

Fig. 1 shows the fraction of cooperators ρc as a function of

the multiplication factor r for different values of the punish-

ment fine α. From Fig. 1, we can see that for any given value

of α, ρc increases from 0 to 1 as r increases. Fig. 2 shows the

fraction of cooperators ρc as a function of the punishment

fine α for different values of the multiplication factor r. From

Fig. 2, one can find that, for a fixed value of r, ρc increases

with α.

Next, we examine the time evolution of cooperator den-

sity ρc(t) for different values of the punishment fine α when

the multiplication factor r = 4. From Fig. 3, one can see that

for each value of α, ρc(t) decreases at the beginning and then

increases. For α = 0, the lowest value of ρc(t) is about 0.06

and ρc(t) will reach a steady value (about 0.4). For α = 1, the

lowest value of ρc(t) is about 0.3, which is much larger than

that for α = 0. Besides, for α = 1, cooperators will occupy the

whole system in the end.

It has been known that the formation of clusters plays

an important role in maintaining cooperation in spatial

games [50–52]. A cooperator (defector) cluster is defined as a

connected component (subgraph) fully occupied by coopera-

tors (defectors). Within clusters, cooperators can assist each



Download	English	Version:

https://daneshyari.com/en/article/8254851

Download	Persian	Version:

https://daneshyari.com/article/8254851

Daneshyari.com

https://daneshyari.com/en/article/8254851
https://daneshyari.com/article/8254851
https://daneshyari.com/

