A note on the points with dense orbit under the expansions of different bases

Wen-Ya Wang*
School of Mathematics and Statistics, Huazhong University of Science and Technology, 430074 Wuhan, PR China

A R TICLE INFO

Article history:

Received 29 September 2014
Accepted 3 June 2015
Available online 22 June 2015

Abstract

It was conjectured by Furstenberg that for any $x \in[0,1] \backslash \mathbb{Q}$, $\operatorname{dim}_{H} \overline{\left\{2^{n} x(\bmod 1): n \geq 1\right\}}+\operatorname{dim}_{H} \overline{\left\{3^{n} x(\bmod 1): n \geq 1\right\}} \geq 1$, where dim_{H} denotes the Hausdorff dimension and \bar{A} denotes the closure of a set A. When x is a normal number, the above result holds trivially. In this note, we are aiming at giving explicit non-normal numbers for which the above dimensional formula holds.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Let $b \geq 2$ be an integer. Use T_{b} to denote the classic b-adic transformation:
$T_{b}(x)=b x-\lfloor b x\rfloor, x \in[0,1)$,
where $\lfloor\cdot\rfloor$ denotes the integer part. Then every x in the unit interval $[0,1)$ can be developed uniquely into a finite or infinite series
$x=\sum_{k \geq 1} \frac{i_{k}(x, b)}{b^{k}}=0 . \quad i_{1} i_{2} \ldots$,
where the digits i_{1}, i_{2}, \ldots are integers from $\{0,1, \ldots, b-1\}$ and they form the expansion of x in base b.

Almost all x in the unit interval $[0,1$) (according to Lebesgue measure) are normal to base b or, equivalently, the sequences $\left\{T_{b}^{n}(x)\right\}_{n \geq 1}$ are uniformly distributed [8]. To some extent (in the sense of Lebesgue measure), the expansion of any point is clear under the transformation T_{b} for any integer $b \geq 2$. However, the actual situation is that when two transformations $T_{b_{1}}, T_{b_{2}}$ are taken into consideration simultaneously, one can obtain very few information about the b_{1} adic expansion of x by knowing its b_{2}-adic expansion [4]. It is

[^0]widely believed that if the expansion of x under $T_{b_{1}}$ is 'simple', it cannot be too 'simple' under $T_{b_{2}}$. For example, if the b_{1}-adic complexity of x is low, then the b_{2}-adic complexity of x would be high [4]. Because of such a phenomenon, Furstenberg [6] conjectured that: for any $x \in[0,1] \backslash \mathbb{Q}$,
\[

$$
\begin{aligned}
& \operatorname{dim}_{H} \overline{\left\{2^{n} x(\bmod 1): n \geq 1\right\}} \\
& \quad+\operatorname{dim}_{H} \overline{\left\{3^{n} x(\bmod 1): n \geq 1\right\}} \geq 1
\end{aligned}
$$
\]

where the notation dim_{H} denotes the Hausdorff dimension and \bar{A} denotes the closure of a set A.

Furstenberg's conjecture holds for almost all real numbers, because almost all of them are normal to all integer bases, hence they are normal to base 2 and base 3. So, a natural question is to ask, besides normal numbers, can one give explicit examples fulfilling the above conjecture? In this short note, we construct a set of real numbers that are not normal but Furstenberg's conjecture holds.

Theorem 1. There exists a Cantor set E composed of real numbers in the unit interval such that
: Each x in E is not normal to base 2.
: For each $x \in E, \overline{\left\{2^{n} x(\bmod 1): n \geq 1\right\}}=[0,1]$ and $\overline{\left\{3^{n} x(\bmod 1): n \geq 1\right\}}=[0,1]$.
: $\operatorname{dim}_{H} E=1$.
The relation between expansions of a point under different bases was studied for a long history in the literature at
least up to Maxfield [9] in 1953. Cassels [5] and Schmidt [11] proved the existence of points which are normal to one base but not normal to another base. Our idea to construct numbers which are not normal follows from Schmidt [11]. Similar idea was used recently to construct normal numbers, see Becher, Heiber \& Slaman [1] and Becher \& Slaman [2]. For the normality of points on fractals, see the recent progress made by Hochman \& Shmerkin [7]. A good reference for these topics is Bugeaud's book [4], which contains more than 700 references.

To end this section, we give some evidences that the expansion of a point may be 'simple' under one transformation but not too 'simple' under the other.

- Denote by $\mathcal{D C}$ the number of digit changes, i.e.,

$$
\mathcal{D C}(x, n, b)=\operatorname{Card}\left\{1 \leq k \leq n: i_{k}(x, b) \neq i_{k+1}(x, b)\right\},
$$

where Card denotes the cardinality of a finite set. Let b_{1}, b_{2} be coprime integers larger than 2. Bugeaud [4, Theorem 6.8] proved that there exist an integer n_{0} and a positive real number κ such that
$\mathcal{D C}\left(x, n, b_{1}\right)+\mathcal{D C}\left(x, n, b_{2}\right) \geq \kappa \log n, \quad$ for $n>n_{0}$.
This means that if the b_{1}-adic expansion of x has few digit changes, then the b_{2}-adic expansion of x must have a certain amount of digit changes.

- Recall that the ternary Cantor set \mathcal{C} consists of points whose digits in 3 -adic expansions contain only 0,2 . But as proved by Schmidt [10], there exist uncountably many points in \mathcal{C} which are normal to base 2.
- This last item may not fit our situation quite well, but it is a concrete example: the continued fraction expansion of $\sqrt{2}$ is very 'simple'
$\sqrt{2}=[1 ; 2,2, \ldots]$,
however we even have no idea about the occurrence of the number 7 in its decimal expansion.

2. Some notation

The following is a list of notations that will be used later.

- A word: a finite sequence of symbols.
- \mathcal{C}_{1} and \mathcal{C}_{2} : the collection of all finite 2 -adic and 3-adic words respectively, i.e.

$$
\begin{equation*}
\mathcal{C}_{1}=\bigcup_{n \geq 1}\{0,1\}^{n}, \quad \mathcal{C}_{2}=\bigcup_{n \geq 1}\{0,1,2\}^{n} \tag{2.1}
\end{equation*}
$$

- $\mathcal{A}=\left(w_{1}, v_{1}, w_{2}, v_{2}, \ldots\right):$ an enumeration of the words in \mathcal{C}_{1} and \mathcal{C}_{2} where $w_{i} \in \mathcal{C}_{1}$ and $v_{i} \in \mathcal{C}_{2}$, and, for each $i \geq 1, w_{i}$ apears infinitely many times, and v_{i} too.
- $|w|$: the length of the word w.
- 0^{m} : a word of length m composed of 0 .
- $[w]_{2}:$ a 2 -adic cylinder of order $|w|$, i.e.
$[w]_{2}:=\{x \in[0,1):$ the 2 -adic expansion of x starts with $w\}$.
- $[v]_{3}:$ a 3-adic cylinder defined similarly.

For the sake of completeness, we recall the definition of normality for real numbers. For any integer $b \geq 2$, let
$x=\frac{i_{1}(x, b)}{b}+\frac{i_{2}(x, b)}{b^{2}}+\ldots$,
so $i_{1}(x, b) i_{2}(x, b) \ldots$ is the b-adic expansion of $x \in[0,1)$. For each finite word $D \in \bigcup_{n \geq 1}\{0,1, \ldots, b-1\}^{n}$, write

$$
\begin{aligned}
& N(x, b, n, D) \\
& \quad=\operatorname{Card}\left\{1 \leq k \leq n:\left(i_{k}(x, b), \ldots, i_{k+|D|-1}(x, b)\right)=D\right\}
\end{aligned}
$$

i.e., the number of the occurrence of the block D in the first n digits of the b-adic expansion of x.

Definition 1. A point $x \in[0,1)$ is called normal to base b, if for each $D \in \bigcup_{n \geq 1}\{0,1, \ldots, b-1\}^{n}$,
$\lim _{n \rightarrow \infty} \frac{N(x, b, n, D)}{n}=\frac{1}{b^{|D|}}$.
Otherwise, it is not normal. Call x absolutely normal if it is normal to all bases $b \geq 2$.

3. Proof of the main results

The technique of the proof is the construction of a nested sequence of intervals controlling the base-2 and base-3 expansions of the real numbers in these intervals. We illustrate the technique as a lemma.

Lemma 1. Let b_{1}, b_{2} be two integers greater than or equal to 2. Let $\left[i_{1}, \ldots, i_{n}\right]_{b_{1}}$ be a b_{1}-adic cylinder of order n. Then there exists a b_{2}-adic cylinder $\left[j_{1}, \ldots, j_{k}\right]_{b_{2}}$ such that
$\left[j_{1}, \ldots, j_{k}\right]_{b_{2}} \subset\left[i_{1}, \ldots, i_{n}\right]_{b_{1}}$,
$2 b_{2}^{-k} \leq b_{1}^{-n}<2 b_{2}^{-k+1}$.
Proof. Let k be the integer such that
$2 b_{2}^{-k} \leq b_{1}^{-n}<2 b_{2}^{-k+1}$.
The first inequality on the choice of k implies that the length of the cylinder $\left[i_{1}, \ldots, i_{n}\right]_{b_{1}}$ is larger than twice of that of a b_{2} adic cylinder of order k. So, it must contain one b_{2}-adic cylinder of order k. Denote such a b_{2}-adic cylinder by $\left[j_{1}, \ldots, j_{k}\right]_{b_{2}}$ (if there are many, just choose one), which fulfills the desired conditions.

Such a plain observation was formulated in the work of Schmidt [11], where he showed the existence of points normal to a collection of bases, but not normal to other bases. The same idea was also used in [1] to construct numbers which are normal to all integer bases.

The desired set E will be a union of a collection of Cantor sets $\left\{E_{m}\right\}_{m \geq 2}$, each of which satisfies the first two items in Theorem 1, and whose Hausdorff dimensions tend to 1 as $m \rightarrow \infty$.

Before the construction, we fix some sequences of integers. Recall that $\mathcal{A}=\left\{w_{1}, v_{1}, w_{2}, v_{2}, \ldots\right\}$ is an enumeration of the elements in \mathcal{C}_{1} and \mathcal{C}_{2} such that each element in $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ appears infinitely many times.

For each $k \geq 1$, let $d_{k}=\left|w_{k}\right|+\left(\left|v_{k}\right|+1\right) \log _{2} 3+3$. Choose a sequence of positive integers $\left\{\ell_{k}\right\}_{k \geq 1}$ such that
$\lim _{k \rightarrow \infty} \frac{d_{1}+\cdots+d_{k}}{\ell_{k}}=0$.
Fix an integer $m \geq 2$ and put $n_{k}=m \cdot \ell_{k}$ for all $k \geq 1$. Recall that \mathcal{C}_{1}^{n} denotes the collection of 2-adic words of length n

https://daneshyari.com/en/article/8254852

Download Persian Version:
https://daneshyari.com/article/8254852

Daneshyari.com

[^0]: * Tel.: +86 13517207395.

 E-mail address: wangwenya2014@gmail.com

