Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier.com/locate/chaos

A note on the points with dense orbit under the expansions of different bases

Wen-Ya Wang*

School of Mathematics and Statistics, Huazhong University of Science and Technology, 430074 Wuhan, PR China

ARTICLE INFO

Article history: Received 29 September 2014 Accepted 3 June 2015 Available online 22 June 2015

ABSTRACT

It was conjectured by Furstenberg that for any $x \in [0, 1] \setminus \mathbb{Q}$,

 $\dim_H \overline{\{2^n x \pmod{1} : n \ge 1\}} + \dim_H \overline{\{3^n x \pmod{1} : n \ge 1\}} \ge 1,$

where dim_H denotes the Hausdorff dimension and \overline{A} denotes the closure of a set A. When x is a normal number, the above result holds trivially. In this note, we are aiming at giving explicit non-normal numbers for which the above dimensional formula holds.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Let $b \ge 2$ be an integer. Use T_b to denote the classic *b*-adic transformation:

 $T_b(x) = bx - \lfloor bx \rfloor, \ x \in [0, 1),$

where $\lfloor \cdot \rfloor$ denotes the integer part. Then every *x* in the unit interval [0, 1) can be developed uniquely into a finite or infinite series

$$x = \sum_{k\geq 1} \frac{i_k(x,b)}{b^k} = 0. \quad i_1 i_2 \dots$$

where the digits $i_1, i_2, ...$ are integers from $\{0, 1, ..., b - 1\}$ and they form the expansion of *x* in base *b*.

Almost all *x* in the unit interval [0, 1) (according to Lebesgue measure) are normal to base *b* or, equivalently, the sequences $\{T_b^n(x)\}_{n\geq 1}$ are uniformly distributed [8]. To some extent (in the sense of Lebesgue measure), the expansion of any point is clear under the transformation T_b for any integer $b \geq 2$. However, the actual situation is that when two transformations T_{b_1} , T_{b_2} are taken into consideration simultaneously, one can obtain very few information about the b_1 -adic expansion of *x* by knowing its b_2 -adic expansion [4]. It is

* Tel.: +86 13517207395.

E-mail address: wangwenya2014@gmail.com

http://dx.doi.org/10.1016/j.chaos.2015.06.003 0960-0779/© 2015 Elsevier Ltd. All rights reserved. widely believed that if the expansion of x under T_{b_1} is 'simple', it cannot be too 'simple' under T_{b_2} . For example, if the b_1 -adic complexity of x is low, then the b_2 -adic complexity of x would be high [4]. Because of such a phenomenon, Furstenberg [6] conjectured that: for any $x \in [0, 1] \setminus \mathbb{Q}$,

 $\dim_H \overline{\{2^n x \pmod{1} : n \ge 1\}}$

 $+ \dim_H \overline{\{3^n x \pmod{1} : n \ge 1\}} \ge 1,$

where the notation dim_{*H*} denotes the Hausdorff dimension and \overline{A} denotes the closure of a set *A*.

Furstenberg's conjecture holds for almost all real numbers, because almost all of them are normal to all integer bases, hence they are normal to base 2 and base 3. So, a natural question is to ask, besides normal numbers, can one give explicit examples fulfilling the above conjecture? In this short note, we construct a set of real numbers that are not normal but Furstenberg's conjecture holds.

Theorem 1. There exists a Cantor set *E* composed of real numbers in the unit interval such that

- 1: Each x in E is not normal to base 2.
- 2: For each $x \in E$, $\overline{\{2^n x \pmod{1} : n \ge 1\}} = [0, 1]$ and $\overline{\{3^n x \pmod{1} : n \ge 1\}} = [0, 1]$.
- 3: $\dim_H E = 1$.

The relation between expansions of a point under different bases was studied for a long history in the literature at

CrossMark

least up to Maxfield [9] in 1953. Cassels [5] and Schmidt [11] proved the existence of points which are normal to one base but not normal to another base. Our idea to construct numbers which are not normal follows from Schmidt [11]. Similar idea was used recently to construct normal numbers, see Becher, Heiber & Slaman [1] and Becher & Slaman [2]. For the normality of points on fractals, see the recent progress made by Hochman & Shmerkin [7]. A good reference for these topics is Bugeaud's book [4], which contains more than 700 references.

To end this section, we give some evidences that the expansion of a point may be 'simple' under one transformation but not too 'simple' under the other.

• Denote by \mathcal{DC} the number of digit changes, i.e.,

$$\mathcal{DC}(\mathbf{x}, n, b) = \operatorname{Card}\{1 \le k \le n : i_k(\mathbf{x}, b) \ne i_{k+1}(\mathbf{x}, b)\},\$$

where Card denotes the cardinality of a finite set. Let b_1 , b_2 be coprime integers larger than 2. Bugeaud [4, Theorem 6.8] proved that there exist an integer n_0 and a positive real number κ such that

$$\mathcal{DC}(x, n, b_1) + \mathcal{DC}(x, n, b_2) \ge \kappa \log n, \quad \text{for } n > n_0.$$

This means that if the b_1 -adic expansion of x has few digit changes, then the b_2 -adic expansion of x must have a certain amount of digit changes.

- Recall that the ternary Cantor set C consists of points whose digits in 3-adic expansions contain only 0,2. But as proved by Schmidt [10], there exist uncountably many points in C which are normal to base 2.
- This last item may not fit our situation quite well, but it is a concrete example: the continued fraction expansion of $\sqrt{2}$ is very 'simple'

 $\sqrt{2} = [1; 2, 2, \ldots],$

however we even have no idea about the occurrence of the number 7 in its decimal expansion.

2. Some notation

The following is a list of notations that will be used later.

- A word: a finite sequence of symbols.
- C₁ and C₂: the collection of all finite 2-adic and 3-adic words respectively, i.e.

$$C_1 = \bigcup_{n \ge 1} \{0, 1\}^n, \quad C_2 = \bigcup_{n \ge 1} \{0, 1, 2\}^n.$$
 (2.1)

- $\mathcal{A} = (w_1, v_1, w_2, v_2, ...)$: an enumeration of the words in \mathcal{C}_1 and \mathcal{C}_2 where $w_i \in \mathcal{C}_1$ and $v_i \in \mathcal{C}_2$, and, for each $i \ge 1$, w_i apears infinitely many times, and v_i too.
- |w|: the length of the word w.
- 0^m : a word of length *m* composed of 0.
- $[w]_2$: a 2-adic cylinder of order |w|, i.e.

 $[w]_2 := \{x \in [0, 1) : \text{the 2-adic expansion of } x \text{ starts with } w\}.$

• $[v]_3$: a 3-adic cylinder defined similarly.

For the sake of completeness, we recall the definition of normality for real numbers. For any integer $b \ge 2$, let

$$x = \frac{i_1(x, b)}{b} + \frac{i_2(x, b)}{b^2} + \dots,$$

so $i_1(x, b)i_2(x, b) \dots$ is the *b*-adic expansion of $x \in [0, 1)$. For each finite word $D \in \bigcup_{n>1} \{0, 1, \dots, b-1\}^n$, write

$$= \operatorname{Card} \left\{ 1 \le k \le n : (i_k(x, b), \dots, i_{k+|D|-1}(x, b)) = D \right\}$$

i.e., the number of the occurrence of the block *D* in the first *n* digits of the *b*-adic expansion of *x*.

Definition 1. A point $x \in [0, 1)$ is called normal to base *b*, if for each $D \in \bigcup_{n \ge 1} \{0, 1, \dots, b-1\}^n$,

$$\lim_{n\to\infty}\frac{N(x,b,n,D)}{n}=\frac{1}{b^{|D|}}.$$

Otherwise, it is not normal. Call *x* absolutely normal if it is normal to all bases $b \ge 2$.

3. Proof of the main results

The technique of the proof is the construction of a nested sequence of intervals controlling the base-2 and base-3 expansions of the real numbers in these intervals. We illustrate the technique as a lemma.

Lemma 1. Let b_1 , b_2 be two integers greater than or equal to 2. Let $[i_1, \ldots, i_n]_{b_1}$ be a b_1 -adic cylinder of order n. Then there exists a b_2 -adic cylinder $[j_1, \ldots, j_k]_{b_2}$ such that

$$[j_1, \ldots, j_k]_{b_2} \subset [i_1, \ldots, i_n]_{b_1},$$

 $2b_2^{-k} \le b_1^{-n} < 2b_2^{-k+1}.$

Proof. Let *k* be the integer such that

$$2b_2^{-k} \le b_1^{-n} < 2b_2^{-k+1}.$$

The first inequality on the choice of *k* implies that the length of the cylinder $[i_1, \ldots, i_n]_{b_1}$ is larger than twice of that of a b_2 -adic cylinder of order *k*. So, it must contain one b_2 -adic cylinder of order *k*. Denote such a b_2 -adic cylinder by $[j_1, \ldots, j_k]_{b_2}$ (if there are many, just choose one), which fulfills the desired conditions. \Box

Such a plain observation was formulated in the work of Schmidt [11], where he showed the existence of points normal to a collection of bases, but not normal to other bases. The same idea was also used in [1] to construct numbers which are normal to all integer bases.

The desired set *E* will be a union of a collection of Cantor sets $\{E_m\}_{m\geq 2}$, each of which satisfies the first two items in Theorem 1, and whose Hausdorff dimensions tend to 1 as $m \to \infty$.

Before the construction, we fix some sequences of integers. Recall that $A = \{w_1, v_1, w_2, v_2, ...\}$ is an enumeration of the elements in C_1 and C_2 such that each element in $C_1 \cup C_2$ appears infinitely many times.

For each $k \ge 1$, let $d_k = |w_k| + (|v_k| + 1) \log_2 3 + 3$. Choose a sequence of positive integers $\{\ell_k\}_{k>1}$ such that

$$\lim_{k \to \infty} \frac{d_1 + \dots + d_k}{\ell_k} = 0. \tag{3.1}$$

Fix an integer $m \ge 2$ and put $n_k = m \cdot \ell_k$ for all $k \ge 1$. Recall that C_1^n denotes the collection of 2-adic words of length n

Download English Version:

https://daneshyari.com/en/article/8254852

Download Persian Version:

https://daneshyari.com/article/8254852

Daneshyari.com