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a b s t r a c t

We propose a computation method to obtain bifurcation sets of periodic solutions in non-

autonomous systems with discontinuous properties. If the system has discontinuity for the

states and/or the vector field, conventional methods cannot be applied. We have developed

a method for autonomous systems with discontinuity by taking the Poincaré mapping on

the switching point in the preceded study, however, this idea does not work well for some

non-autonomous systems with discontinuity. We overcome this difficulty by extending the

system to an autonomous system. As a result, bifurcation sets of periodic solutions are solved

accurately with a shooting method. We show two numerical examples and demonstrate the

corresponding laboratory experiment.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

To analyze stability or bifurcations for a periodic solution

of an ordinary differential equation (ODE) with smooth non-

linear characteristics, a bunch of computational packages or

algorithms are available [1–3]. Basically these methods con-

vert the periodic motion into a fixed point problem by taking

Poincaré map and solve it by applying an appropriate shoot-

ing method.

On the other hand, if the system contains non-smooth

properties, some special treatments should be considered

since continuousness of the map for the given ODE is lost

[4–6], fortunately some non-smooth systems can be ana-

lyzed by putting an approximated smooth function into the

ODE. Otherwise, defining a composite Poincaré map with
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multiple sections attached to break points is required [7].

How to construct the differentiable Poincaré map whose

characteristic equation results correct multipliers is a key

point of these methods. Previous study [8] showed bifurca-

tion analysis of behaviors on the stepping motor which has

an autonomous dynamical system and has discontinuity on

its vector field. Another one [9] showed global bifurcation

analysis of such systems. However, as far as we know, there

are no bifurcation analysis for non-autonomous systems with

discontinuity, thus we focus on these systems. In fact, if we

apply Kousaka’s method which is for autonomous systems to

these non-autonomous systems, the shooting method con-

verges slowly and leaves some errors. Thereby tracing bifur-

cation sets sometimes fails because of accumulation of these

errors. We intuitively guess that some special treatment for

adding a forcing term in evaluation of the Jacobian matrix.

At first, we tried applying previously mentioned method

[7] simply to the forced Izhikevich neuron model [10], which

is a non-autonomous system with discontinuity, but then we

obtained the differentiable Poincaré map with some errors.
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The error could not be ignored to analyze bifurcation struc-

ture of the system.

In this paper, we investigate a cause of the errors and pro-

pose a universal algorithm for solving bifurcation problems

of nonlinear non-autonomous hybrid systems. The remain-

ing contents are organized as follows; Section 2 describes

the problem formulation. Section 3 investigates what is a

cause of the errors with numerical experiments and propose

our idea to solve it. Section 4 devotes to show validation of

our method with two examples, i.e., we discuss agreement

among computed bifurcation diagrams, numerical solutions,

and laboratory experiments of each system. Section 5 con-

cludes our study.

2. Numerical analysis of nonlinear non-autonomous

system with discontinuous characteristic

As proposed on the previous study [11], when we con-

sider systems with discontinuous characteristics, we often

define the Poincaré section with the condition of discon-

tinuity. However on smooth non-autonomous systems, we

often define the Poincaré section with the time because peri-

odic solutions have a periodicity synchronized with the fre-

quency of the external force. Thus on this paper we define

the Poincaré section of the systems with the time and try to

analyze it by previously mentioned method.

Similarly to the previous study [12], let us consider an n-

dimensional non-autonomous system with m-tuple differen-

tial equations described by

x = (x1, . . . ,xn)
� ∈ Rn

, (1)

dx

dt
= f i(t, x), i = 0, . . . , m − 1, (2)

where t ∈ S1 is the adjusted time with S1 = {t ∈ R mod τ }, τ
∈ R, which is often 2π /ω, is a parameter for an initial section

�0, x ∈ Rn is the state and fi: Rn → Rn is a C∞ class function.

Assume that there is a periodic solution for Eq. (2). When

we suppose that �i is a traversal section to the solution orbit

and put x0 = x(0) ∈ �0, then the solution of Eq. (2) is given

by

x(t) = ϕ(t, x0). (3)

Moreover, each solution following fi is given by ϕi(t, xi, ti),

where ti is the starting time of the solution. Now we provide

�i with threshold values as follows:

�i =
{

t ∈ S1
, x ∈ Rn|qi(t, x, λi) = 0

}
, (4)

where qi is a differentiable scalar function and λi ∈ R is a

unique parameter that defines the position of �i. In addition,

on the non-autonomous system,

�0 =
{

t ∈ S1
, x ∈ Rn|q0(t, x, τ ) = t = 0

}
. (5)

When an orbit governed by fi reaches the section �i+1, the

governing function is changed to f i+1. If the orbit passing

through several sections reaches �0 again, then m sub maps

are defined as follows:

T0 : �0 → �1

x0 �→ x1 = ϕ0(t1, x0, t0 = 0)
T1 : �1 → �2

x1 �→ x2 = ϕ1(t2, x1, t1)
...

Tm−1 : �m−1 → �0

xm−1 �→ xm = ϕm−1(tm, xm−1, tm−1).

(6)

From Eq. (6), the Poincaré map T is given by the following

composite map:

T(x(k), τ, λ1, . . . , λm−1) = Tm−1 ◦ · · · ◦ T1 ◦ T0. (7)

Hence

x(k + 1) = T(x(k), τ, λ1, . . . , λm−1). (8)

When the orbit starting from x0 ∈ �0 returns x0 itself, this

orbit forms a periodic orbit and the corresponding fixed point

of T is written as follows:

x0 = T(x0, τ, λ1, . . . , λm−1). (9)

The characteristic equation is given by

χ(μ) = det

(
∂T(x0)

∂x0

− μI

)
= 0, (10)

where μ is a multiplier of ∂T(x0)/∂x0. When the multiplier

satisfies |μ| = 1, solution attractors of the system occurs bi-

furcation phenomena. In other words, μ can be given as

|μ| = 1 to obtain a bifurcation parameter set.

3. Problem and solution idea

3.1. Problem on numerical analysis

Here we found a problem on numerical analysis previ-

ously mentioned. In common for the systems with discontin-

uous characteristics, we could use composition of maps for

∂T/∂x0 as:

∂T

∂x0

=
m−1∏
i=0

∂Tm−1−i

∂xm−1−i

∣∣∣∣
tm−i

tm−1−i

. (11)

However on numerical experiment, right hand of Eq. (11) is

not equal to its left hand of it. Now we confirm this with

an example of 1-periodic orbit observed in forced Izhikevich

neuron model introduced in Section 4.1, see Fig. 1.

By using numerical differentiation, we can obtain ∂Ti/∂xi

roughly:

∂T0

∂x0

=
(

0.00000 0.00000
−0.05423 0.70627

)
, (12)

∂T1

∂x1

=
(

0.00000 0.00000
1.00000 1.00000

)
, (13)

∂T2

∂x2

=
(

−0.99281 0.36780
0.24401 −0.09478

)
, (14)

and for this example, we can regard m = 3 and then Eq. (11)

is expressed by
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