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a b s t r a c t

The solution of the heat conduction equation in derivatives of fractional order with the
account of diffuse and convective mechanisms of heat transfer is provided. The dependence
of the temperature distribution on the rates of derivatives of fractional order by time and
coordinate is studied.
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1. Introduction

Intensive development of both fundamental and
applied aspects of mathematics of fractional calculus is
started since the systems with the fractional structure
were discovered [1]. It appeared that the study of both
equilibrium and non-equilibrium processes in system hav-
ing fractal structure requires application of the fractional
integrals and derivatives. In paper [2] was given the physi-
cal interpretation of the fractional integral. The integral

f ðtÞ ¼
R t

0 gðt � sÞhðsÞds where hðtÞ – input signal, f ðtÞ –
output signal and gðtÞ – memory function, was considered.
The absence of memory corresponds to the case gðtÞ ¼ dðtÞ
where d – Dirac delta function. The case gðtÞ ¼ HðtÞ, where
HðtÞ – Heaviside step function, corresponds to the pres-
ence of full memory. The author of paper [2] wondered
how will change the expression for the f ðtÞ if gðtÞ occupies
an intermediate position between the functions dðtÞ and
HðtÞ, that is nonzero value on the fractional set. For the
set of fractional order the Cantors set is chosen. Initial time
interval ½0; t� is divided into three segments with the length
nt; ðn < 1=2Þ and the middle segment is removed. Remain-
ing segments with length nt are processed by the same

procedure. This procedure is repeated infinitely remaining
the value of initial integral constant. In result of limiting
transition the initial integral is converted to the integral

of fractional order f ðtÞ ¼ 1
CðmÞ

R t
0 ðt � sÞm�1ðsÞds; m 2 ð0;1�.

However, in papers [3,4] it was found that such transition
is mathematically incorrect and there is no direct relation-
ship of fractional integral with the Cantors set. Further in
paper [5] the relationship between stable distribution of
the probability theory and the fractional integral was
defined. Random value X that is defined by characteristic
function of the form f ðtÞ ¼ expð�aajtjaÞ, (a P 0; a 2 ð0;2� -
stability parameter) has stable density of distribution
equal to the Fourier transform of the characteristic func-
tion. The value X is explicitly defined for two cases: for

a ¼ 2 we have centered normal law pðxÞ ¼ 1ffiffiffiffiffiffi
4pa
p exp � x2

4a

� �
,

and for a ¼ 1 we have Cauchy law with density
pðxÞ ¼ a

p
1

x2þa2. The paper [5] shows that appearance of frac-
tional derivative in time is connected with the random
process having stable distribution of probability and para-
meter of stable distribution coincide with the rate of
derivative of fractional order. In fact the necessity of
application of the fractional calculus for the study of non-
equilibrium properties of systems with fractional structure
is associated with the fundamental physical aspects. The
peculiarity of the systems with fractional structure is the
existence of well-developed interphase boundary, that is
actually require to use the geometry of fractional structure
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that has self-similarity [1]. The portion of the interphase
boundary is relatively big that contributes to the observ-
ing characteristics of matter. Let us note that interphase
boundary is the special state of matter, that occupies an
intermediate position between the existing phases, and
its nature at present time is not quite clear [6].
Particularly, relaxation processes on the interphase
boundary have complex character that leads to a non-
linear and non-local processes of heat-and-mass transfer.
As a result the principle of local equilibrium fails. It is
required to use the principle of local non-equilibrium.
That eventually lead to appearance of the different
generalizations of thermodynamics [7]. The non-local
effects account is generally performed by means of
integral operator. The integral operator kernel contains
the nature of non-locality. To solve the integro-differen-
tial equation it is required to reduce the integral
operators to the series of differential operators with the
ascending differentiation rates. Obtained equations
appear to be too complex and not always can be solved.
In this context the technique of integro-differentiation of
fractional order is the subject of interest. It is currently
considered that the mathematical technique of fractional
calculus [8–10] presents a new approach to the descrip-
tion of the transfer processes in systems for which it is
significant to account the non-local properties in time
and by coordinate. Unlike the traditional equations of
mathematical physics the fractional calculus contains
additional parameters rates of the derivatives of fraction-
al order that leads to the emergence of a new class of
solutions. Using the rates of derivatives of fractional
order as parameters for explanation experimental data
we get new information. Thus, in paper [11] on the base
of equation in derivatives of fractional order in time,
analyzing known experimental data of kinetics and
sorption were obtained fundamentally new results. In
work [12] an integral-balance method to solve fractional
sub-diffusion equations has been conceived. Due to using
the rates of derivatives of fractional order in interpreta-
tion of experimental data, the study of relation between
the solution of the heat conduction equation in deriva-
tives of fractional order and the rates of the fractional
derivatives is the subject of interest.

2. Heat equation in derivatives of fractional order with
convective transfer mechanism

In research of heat transfer in complex heterophase
structures are widely used equations of parabolic type in
derivatives of fractional order [13,14].

@aTðn; sÞ
@sa � D

@b

@nb Tðn; sÞ þ V
@c

@nc Tðn; sÞ ¼ 0 ð1Þ

Included in (1) derivatives of fractional order are
defined as follows

@aTðn; sÞ
@sa ¼ 1

Cð1� aÞ
@

@s

Z s

0

Tðn; sÞ
ðs� zÞa

dz� Tðn;0Þ
Cð1� aÞsa ð2Þ

@bTðn; sÞ
@nb ¼ 1

2Cð2� bÞ cosðpð2� bÞ=2Þ
@2

@n2

�
Z 1

�1

Tðn0; sÞ
jn� n0jb�1 dn0 ð3Þ

@cTðn; sÞ
@nc ¼ 1

2Cð1� cÞ cosðpð1� cÞ=2Þ
@

@n

�
Z 1

�1

Tðn0; sÞ
jn� n0jc

dn0 ð4Þ

where jnj <1; s > 0;

Tðn; sÞ – temperature;
s ¼ t=t0; n ¼ x=x0 – non-dimensional time and
coordinate;
D ¼ at0=x2

0 – non-dimensional thermal diffusivity;
a ¼ k=cpq – thermal diffusivity;
cp – specific isobaric heat capacity, q – density;
t0; x0 – characteristic time and typical scale;
0 < a 6 1; 0 < c 6 1; 1 < b 6 2;
V ¼ vx0=t0 – non-dimensional speed;
v – velocity of convective stream of matter.

Caputo derivative (2) accounts memory (non-locality in
time), Riss derivative (3) and (4) accounts spatial correla-
tion (spatial non-locality), CðxÞ – Euler gamma function.
To solve the Eq. (4) we use the Fourier transform by the
space variable

TFðk; sÞ ¼
Z 1

�1
expð�ikxÞTðx; sÞdx

and the Laplace transform by the time variable

TFLðk;pÞ ¼
Z 1

0
expð�psÞTFðk; sÞds

Performing the Fourier and the Laplace transform, we
obtain the following expression

TFLðk;pÞ ¼
TFðk;0Þ

p1�aðpa þ Djkjb � iV jkjcsignðkÞÞ
ð5Þ

Performing an inverse Fourier and Laplace transform, we
have

Tðn; sÞ ¼ 1
2p

Z 1

�1

Z 1

�1
expð�ikðn� n0ÞÞTðn0;0Þ

� Ea;1ð�ðDjkjb � iV jkjcsignðkÞÞsaÞdk dn0 ð6Þ

Here Ea;mð�zaÞ ¼
P1

n¼0ð�1Þn zan

CðanþmÞ – Mittag–Lefflers func-

tion [8]. Solution (6) depends of three parameters a; b; c
and as it shown below in particular cases corresponds to
earlier known solutions.

3. Analysis of the obtained solutions

To analyze the dependence of the solution (6) on the
parameters a; b and c consider the case for
Tðn;0Þ ¼ T0dðnÞ. Then from (6) we obtain
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