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a b s t r a c t

Toward the middle of 2001, the authors started arguing that fractals are important when
discussing the operational resilience of information systems and related computer sciences
issues such as artificial intelligence. But in order to argue along these lines it turned out to
be indispensable to define fractals so as to let one recognize as fractals some sets that are
very far from being self similar in the (usual) metric sense. This paper is devoted to define
(in a loose sense at least) fractals in ways that allow for instance all the Cantor sets to be
fractals and that permit to recognize fractality (the property of being fractal) in the context
of the information technology issues that we had tried to comprehend. Starting from the
meta-definition of a fractal as an ‘‘object with non-trivial structure at all scales’’ that we
had used for long, we ended up taking these words seriously. Accordingly we define frac-
tals in manners that depend both on the structures that the fractals are endowed with and
the chosen sets of structure compatible maps, i.e., we approach fractals in a category-de-
pendent manner. We expect that this new approach to fractals will contribute to the
understanding of more of the fractals that appear in exact and other sciences than what
can be handled presently.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

(I) – Toward the middle of 2001, we (i.e., both authors
and a few other friends) began to try convince some of
their colleagues in the information technology industry
that fractals are needed to describe essential aspects of opera-
tional resilience (or OR) of computer systems. Computer sys-
tems are big entities that may comprise the business
environment when the computers and other machinery
are integrated in a big enterprise, and may in particular
comprise part at least of the work force. The main obstacle
that we met in this task that we set to ourselves – for us a
pre-requisite to attack seriously the issue of OR and other
important issues of computer technology and computer
science such as artificial intelligence (or AI) – was the fact

that most people, at least those out of the inner circle of
fractals experts, had a view of fractals that was way too
restrictive to let them recognize some computer systems
and other objects as fractals.

In this paper we propose to define fractals in a way that
depends on the structures that one chooses to equip either
the space in which the fractal leaves or the fractal itself and
on the chosen set of allowed maps for said structures. One
can then say that the dependence is upon categories, the
formal concept developed to deal with structures, and
structure compatible maps. The implications of our work
on fractals upon OR, AI, and operational risk, i.e., our origi-
nal goal, will be reported elsewhere [43]: at best will we
allow ourselves some brief remarks in the present paper.

(II) – In Section 2, we discuss briefly as first examples
the Koch curve and three families of related objects. We
construct these first objects using a method that we call
the ‘‘rescale-and-replace construction’’ that is based on the
same sort of symbolic space that arise in the discussion

http://dx.doi.org/10.1016/j.chaos.2015.02.003
0960-0779/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding authors.
E-mail addresses: francis_lacan@uk.ibm.com (F. Lacan), charlestresser@

yahoo.com (C. Tresser).

Chaos, Solitons & Fractals 75 (2015) 218–242

Contents lists available at ScienceDirect

Chaos, Solitons & Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier .com/locate /chaos

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2015.02.003&domain=pdf
http://dx.doi.org/10.1016/j.chaos.2015.02.003
mailto:francis_lacan@uk.ibm.com
mailto:charlestresser@yahoo.com
mailto:charlestresser@yahoo.com
http://dx.doi.org/10.1016/j.chaos.2015.02.003
http://www.sciencedirect.com/science/journal/09600779
http://www.elsevier.com/locate/chaos


of Iterated Function Systems (or IFSs) that we use in that
same section to present many further examples. We exam-
ine briefly a collection of examples of fractals, including
Cantor sets as examples of complicated objects that can
be constructed using diverse methods. We also introduce
in 2 a few structure-dependent forms of self similarity,
including a hierarchy of more and more general definitions
of self similarity that are related to IFSs as another (and
more usual) method to construct fractals that are self simi-
lar in some sense. We have tried to stay far enough from
classical introductions to fractals in order to keep some
experts amused, at least till we come to the new material
(that appears mostly in 4.), but also with the idea in mind
that many non-experts have read some classical material
on fractals and would also prefer to start from a new angle.
The presentation of the material lets us first manipulate in
2 the idea of ‘‘dependence upon structure’’ in the context of
self similarity that is a concept much easier to grasp (for
most structures) than the general concept of ‘‘category-de-
pendent fractals’’ whose study we initiate here.

(III) – In order to illustrate the absence (believed to be
the rule) of strict metric self similarity (i.e., self similarity
that involves only finitely many scaling ratios) in some at
least of the fractals that one is faced with in natural
sciences, we report in 3 on the very essential absence of
strict metric self similarity of the Universal period dou-
bling Cantor set (that we present with enough details
and background to justify the ‘‘natural’’ character that we
attribute to that object). We expound without getting into
the details of the proof, that the ratios that define the generic
universal period doubling attractor (for smooth enough gen-
eric unimodal maps) (or GUPDA) accumulate on another uni-
versal Cantor set, the generically universal asymptotic ratios
Cantor set (or GUARCS). A map is unimodal if its graph has
a single turning point. This result from [10] answered posi-
tively in 2003 a 1977 conjecture by Coullet and Tresser
[15]. We will also discuss the way various ratios that form
the GUARCS are located on the GUPDA in order to have a
fuller view on these very special Cantor sets. These results
from [10] are presented here for the first time in a manner
that is only mildly technical. To our knowledge, no other
deterministic fractal has so far showed up in experiments
and exhibited a set of scaling ratios proved to be infinite
despite the generally accepted fact that such complicated
geometric structure is the rule rather than the exception for
fractals that emerge when studying natural phenomena. The
level of precision that we obtain on the GUPDA is in par-
ticular too fine to possibly be fully captured by so called
multi-fractal analysis, a point a view also defended for
instance by Feigenbaum [22]. Of course this does not pre-
vent multi-fractal analysis from being an important field.
The name multi-fractal analysis (and more precisely the
prefix ‘multi’’) is what we criticize in 3 as creating confu-
sion about the role of strict metric self similarity in fractal-
ity. This is because strict metric self similarity is so rare in
nature that it is rather pathological in natural sciences and
other applications. This statement is both about strict
deterministic self similarity and strict statistical self similar-
ity (by which we mean random objects such that the
rescaled versions of any of pieces of these objects at

different metric scales do not appear as depending on the
scale). Strictly metrically self similar fractals do appear in
some mathematical contexts or and man made objects.

(IV) – The proposed structure-dependent definitions of
fractals (or more precisely the category-dependent def-
initions as explained there) are formulated in 4. There we
also discuss various consequences of using the definitions
of fractals that we propose (we have many definitions pre-
cisely because there are many different categories). As a
striking example, with a definition of topological fractals
at hand, we give examples of fractals which, beyond lack
of metrical self similarity, also fails strongly to be topologi-
cally self similar in that no two points have topologically
similar (i.e., homeomorphic) neighborhoods: we do not
know how frequent is such a severe lack of topological self
similarity, neither in mathematics nor in any natural
science, business or technology: we suspect a great abun-
dance. Although we propose definitions we have done
our best to not be too formal; we are not aiming at having
the ultimate point of view. This paper is mostly an invitation
to a cross-disciplinary collective effort.

2. Starting with basic vocabulary and a few examples

2.1. Preliminary mathematics

The definitions and basic properties of general founda-
tional concepts, e.g., about topological and metric spaces
are easily found in many world wide web (or www)
resources. We provide here and then all along as needed,
the definitions that we consider as most essential for the
discussion.

2.1.1. Distances

The map d : Q 2 ! Rþ is a distance on Q if for any x; y; z
in Q:

– dðx; yÞ ¼ 0 if and only if x ¼ y,
– dðx; yÞ � dðy; xÞ,
– dðx; zÞ 6 dðx; yÞ þ dðy; zÞ.

A metric space is a set endowed with a distance.
The length of a segment (relative to d) is the distance

between its extremities. We assume the plane, and more
generally Rn for n P 1, equipped with the Euclidean dis-
tance dE given when n ¼ 2 (the case on which we shall con-
centrate first) by:

dEððx0; y0Þ; ðx1; y1ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x0Þ2 þ ðy1 � y0Þ

2
q

for any pair of points ððx0; y0Þ; ðx1; y1ÞÞ in some orthonormal
basis. Let ðX; dÞ be a complete metric space (for the usual
distance, the set Q of rational numbers is not a complete
set and R is the smallest complete space containing Q:
see also the www and references found there). Let then
CðXÞ stand for the set of non-empty subsets of X that are
compact (i.e., closed and bounded subsets when dealing
with complete metric spaces). We write Bðc;qÞ for the set
of points x in ðX; dÞ such that dðc; xÞ 6 q, i.e., the closed ball
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