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a b s t r a c t

In the present paper we study the C1-robustness of the three properties: average shadow-
ing, asymptotic average shadowing and limit shadowing within two classes of conservative
flows: the incompressible and the Hamiltonian ones. We obtain that the first two proper-
ties guarantee dominated splitting (or partial hyperbolicity) on the whole manifold, and
the third one implies that the flow is Anosov.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction: basic definitions and statement of the
results

It is known since long time ago that nonlinear systems
behave, in general, in a quite complicated fashion. One of
the most fundamental example of that was given by
Anosov when studying the geodesic flow associated to
metrics on manifolds of negative curvature [3]. Anosov
obtained a striking geometric-dynamical behavior, now
called uniform hyperbolicity, of those systems in particular
a global form of uniform hyperbolicity (a.k.a. Anosov
flows). The core characteristic displayed by uniform hyper-
bolicity is, in brief terms, that on some invariant directions
by the tangent flow we observe uniform contraction or
expansion along orbits, and these rates are uniform. In
the 1960s the hyperbolicity turned out to be the main
ingredient which trigger the construction of a very rich
theory of a wide class of dynamical systems (see e.g.
[47,35]). It allows us to obtain a fruitful geometric theory
(stable/unstable manifolds), a stability theory (in rough
terms that hyperbolicity is tantamount to structural stabil-
ity), a statistical theory (smooth ergodic theory) and a
numerical theory (shadowing and expansiveness) are some
examples of powerful applications of the uniform

hyperbolicity concept. However, from an early age one
began to understand that the uniform hyperbolicity was
far from covering all types of dynamical systems and natu-
rally other more relaxed definitions began to emerge
(nonuniform hyperbolicity, partial hyperbolicity and domi-
nated splitting, see e.g. [23]).

As mentioned above, the hyperbolicity was found to
contain very interesting numerical properties. Actually,
the hyperbolic systems display the shadowing property:
meaning that quasi-orbits, that is, almost orbits affected
with a certain error, were shaded by true orbits of the
original system. This amazing property, which is not pre-
sent in partial hyperbolicity (see [22]), contained itself
much of the typical rigidity of the hyperbolicity and its
strong assumptions. Nonetheless, a much more surprising
fact is that, under a certain stability hypothesis, the other
way around turns out to be also true. To be more precise,
if we assume that we have the robustness of the shadow-
ing property, then the dynamical system is uniformly
hyperbolic. In overall, some stability of a pointedly
numerical property, allow us to obtain a geometric,
dynamic and also topological feature. The next step then
was to address the following question: is it possible to
weaken the shadowing property and obtain the same conclu-
sions? If not, how far can we get in our findings?

In the present paper we deal with three enfeebled
branches of shadowing: the average shadowing, the asymp-
totic average shadowing and the limit shadowing (see
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Section 1.3 for full details). In conclusion, we prove that the
stability of these types of shadowing for conservative flows
imply (some) hyperbolicity. More specifically, the stability
of the first two types of shadowing mentioned above imply
that the flow admits a dominated splitting in the whole
manifold, and the one of the third shadowing guarantees
that the flow is of Anosov type. Theses results hold for
incompressible flows and Hamiltonian ones and in arbitrar-
ily high dimension. See Section 1.4 for the statements of the
main results of this work.

1.1. Dissipative and incompressible flows setting

Along this paper we consider vector fields X : M ! TM,
where M is a d-dimensional (d P 3) connected and closed
C1 Riemannian manifold M and TM its tangent bundle.
Given a vector field X we have an associated flow Xt which
is the infinitesimal generator of X in a sense that
@tX

t jt¼sðpÞ ¼ XðXsðpÞÞ. If the divergence of X, defined by

r � X ¼Pd
i¼1

@Xi
@xi

, is zero we say that X is divergence-free.

The flow Xt has a tangent flow DXt
p which is the solution

of the non-autonomous linear variational equation
@tuðtÞ ¼ DXXt ðpÞ � uðtÞ. Moreover, due to Liouville’s formula,

if X is divergence-free, the associated flow Xt preserves
the volume-measure and for this reason we call it incom-
pressible. If the vector field is not divergence-free its flow
is dissipative. We denote by X1ðMÞ the set of all C1 vector
fields and by X1

lðMÞ � X1ðMÞ the set of all C1 vector fields
that preserve the volume, or equivalently the set of all
incompressible flows. We assume that both X1ðMÞ and
X1

lðMÞ are endowed with the C1 Whitney (or strong) vector
field topology which turn these two vector spaces com-
pleted, thus a Baire space. We denote by R the set of regu-

lar points of X, that is, those points x such that XðxÞ–~0 and
by Sing (X)¼ M nR the set of singularities of X. Let us
denote by CritðXÞ the set of critical orbits of X, that is, the
set formed by all periodic orbits and all singularities of X.

The Riemannian structure on M induces a norm �k k on
the fibers TpM; 8p 2 M. We will use the standard norm
of a bounded linear map L given by

Lk k ¼ sup
uk k¼1

LðuÞk k:

A metric on M can be derived in the usual way by using
the exponential map or through the Moser volume-charts
(cf. [40]) in the case of volume manifolds, and it will be
denoted by dð�; �Þ. Hence, we define the open balls Bðx; rÞ of
the points y 2 M satisfying dðx; yÞ < r by using those charts.

Dissipative flows appear often in models given by dif-
ferential equations in mathematical physics, economics,
biology, engineering and many diverse areas.
Incompressible flows arise naturally in the fluid mechanics
formalism and has long been one of the most challenging
research fields in mathematical physics.

1.2. The Hamiltonian flow formalism

Let ðM;xÞ be a compact symplectic manifold, where M
is a 2d-dimensional (d P 2), smooth and compact

Riemannian manifold endowed with a symplectic struc-
ture x, that is, a skew-symmetric and nondegenerate 2-
form on the tangent bundle TM. We notice that we use
the same notation for manifolds supporting Hamiltonian
flows and also flows as in Section 1.1, which we hope will
not be ambiguous.

We will be interested in the Hamiltonian dynamics of
real-valued C2 functions on M, constant on each connected
component of the boundary of M, called Hamiltonians,
whose set we denote by C2ðM;RÞ. For any Hamiltonian
function H : M�!R there is a corresponding Hamiltonian
vector field XH : M�!TM, tangent to the boundary of M,
and determined by the equality

rpHðuÞ ¼ xðXHðpÞ;uÞ; 8u 2 TpM;

where p 2 M.
Observe that H is C2 if and only if XH is C1. Here we con-

sider the space of the Hamiltonian vector fields endowed
with the C1 topology, and for that we consider C2ðM;RÞ
equipped with the C2 topology.

The Hamiltonian vector field XH generates the
Hamiltonian flow Xt

H , a smooth 1-parameter group of sym-
plectomorphisms on M satisfying @tX

t
H ¼ XHðXt

HÞ and

X0
H ¼ id. We also consider the tangent flow

DpXt
H : TpM�!TXt

HðpÞ
M, for p 2 M, that satisfies the lin-

earized differential equality @tDpXt
H ¼ ðDXt

HðpÞ
XHÞ � DpXt

H ,

where DpXH : TpM�!TpM.
Since x is non-degenerate, given p 2 M, rpH ¼ 0 is

equivalent to XHðpÞ ¼ 0, and we say that p is a singularity
of XH . A point is said to be regular if it is not a singularity.
We denote by R the set of regular points of H, by Sing (XH)
the set of singularities of XH and by Crit (H) the set of criti-
cal orbits of H.

By the theorem of Liouville [1, Proposition 3.3.4], the
symplectic manifold ðM;xÞ is also a volume manifold, that
is, the 2d-form xd ¼ x ^ . . .d ^x is a volume form and
induces a measure l on M, which is called the Lebesgue
measure associated to xd. Notice that the measure l on
M is invariant by the Hamiltonian flow.

Fixed a Hamiltonian H 2 C2ðM;RÞ any scalar
e 2 HðMÞ � R is called an energy of H and H�1ð ef gÞ ¼
p 2 M : HðpÞ ¼ ef g is the corresponding energy level set

which is Xt
H-invariant. An energy surface EH;e is a connected

component of H�1ð ef gÞ; we say that it is regular if it does
not contain singularity points and in this case EH;e is a regu-
lar compact ð2d� 1Þ-manifold. Moreover, H is constant on
each connected component EH;e of the boundary @M.

A Hamiltonian system is a triple ðH; e; EH;eÞ, where H is a
Hamiltonian, e is an energy and EH;e is a regular connected

component of H�1ðfegÞ.
Due to the compactness of M, given a Hamiltonian func-

tion H and an H regular value e 2 HðMÞ the energy level
H�1ð ef gÞ is the union of a finite number of disjoint compact
connected components, separated by a positive distance.
Given e 2 HðMÞ, the pair ðH; eÞ � C2ðM;RÞ � R is called a
Hamiltonian level; if we fix EH;e and a small neighborhood
W of EH;e there exist a small neighbourhood U of H and
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