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a b s t r a c t

In this article, we introduce the adapted inverse iteration method to generate bicomplex
Julia sets associated to the polynomial map w2 þ c. The result is based on a full character-
ization of bicomplex Julia sets as the boundary of a particular bicomplex cartesian set and
the study of the fixed points of w2 þ c. The inverse iteration method is used in particular to
generate and display in the usual 3-dimensional space bicomplex dendrites.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fractal sets created by iterative processes have been
greatly studied in the past decades (see [5,7,8,13]). After
being displayed in the complex plane, they became part
of the 3-dimensional space when Norton [14] gave
straightforward algorithms using iteration with quater-
nions. The quaternionic Mandelbrot set defined by the
quadratic polynomial of the form q2 þ c was explored in
[10,11]. However, as established in [1], it seems that no
interesting dynamics could arise from this approach based
on the local rotations of the classical sets. Another set of
numbers revealed to be possibly more appropriate:
Bicomplex Numbers. In [19], the author used bicomplex
numbers to produce and display in 3D a Mandelbrot set
for the quadratic polynomial of the form w2 þ c. Filled-in
Julia sets were also generated using a method analogous
to the classical one in the complex plane [19,20]. Since
the bicomplex polynomial PcðwÞ ¼ w2 þ c is the following
mapping of C2 : z2

1 � z2
2 þ c1;2z1z2 þ c2

� �
where w ¼ z1þ

z2i2 :¼ ðz1; z2Þ and c ¼ c1 þ c2i2 :¼ ðc1; c2Þ, bicomplex

dynamics is a particular case of dynamics of several com-
plex variables. More specifically, we note that this map-
ping is not a holomorphic automorphism of C2.

In this article, we study bicomplex Julia sets associated
with the quadratic polynomial w2 þ c. We give a specific
characterization of bicomplex Julia sets derived from a
more general result in terms of the boundary of a bicom-
plex cartesian set. This characterization allows an easy dis-
play in the usual 3D space. The study of the inverse iterates
and fixed points of w2 þ c along with the characterization
previously introduced lead to the first generalization of
the inverse iteration method in two complex variables.
This method, well known in the complex plane to generate
Julia sets (see [4,15,17]), is used to generate and display in
3D a particular class of bicomplex Julia sets.

2. Preliminaries

2.1. Julia sets in the complex plane

Julia sets in the complex plane are defined according to
the behavior of the forward iterates of a rational function.
In this article, we restrict our study of Julia sets to a poly-
nomial map that is easy to work with and has a dynamical
system equivalent to the one of any polynomial map of
degree two: PcðzÞ ¼ z2 þ c where z; c 2 C and c is fixed.
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First, we consider its iterates and fixed points. Next, we
present some important and well known results about
Julia sets.

The forward iterates of Pc are given by P0
c ðzÞ ¼ z and

Pn
c ðzÞ ¼ ðPcðzÞÞ�n ¼ ðPc � Pðn�1Þ

c ÞðzÞ for n 2 f1;2; . . .g. The

inverse iterates are defined as P�1
c ðzÞ :¼ ðPcðzÞÞ�ð�1Þ ¼

fw 2 CjPcðwÞ ¼ zg and P�m
c ðwÞ :¼ ðPm

c ðwÞÞ
�ð�1Þ for m 2

f1;2; . . .g. The multivalued function
ffiffiffiffiffiffiffiffiffiffiffi
z� c
p

is associated
to P�1

c . The fixed points of Pc are found by solving the equa-
tion Pcðz0Þ ¼ z0. A fixed point z0 is said to be attractive if
0 6 j2z0j < 1, repelling if j2z0j > 1 and indifferent if
j2z0j ¼ 1. For c ¼ 1

4, there is a single indifferent fixed point
z0 ¼ 1

2. Otherwise, there are two distinct fixed points and
at least one of them is repelling (see [16]).

Let Kc ¼ fz 2 CjfPn
c ðzÞg

1
n¼0 is boundedg be the filled-in

Julia set associated to Pc . The Julia set related to Pc is
denoted by J c and defined as either one of the following:

1. The boundary of the filled-in Julia set: J c ¼ @Kc .
2. The set of points z 2 C for which the forward iterates

do not form a normal family at z (see [21] for details
on normal families of functions).

The second definition leads to the following theorem
that justifies the inverse iteration method. Note that it is
stated for Julia sets J P defined by any monic polynomial
map P of degree d P 2. It is so valid for Pc. In [12], the clas-
sical statement of the result has been slightly modified
from the one in [4].

Theorem 1. Let P be a monic complex polynomial of degree
d P 2.

(i) If z0 2 J P and V is any open neighborhood of z0, then
for any whole number k1 P 0 there exists N > k1 such

that J P #
SN

k¼k1
PkðVÞ.

(ii) For any z1 2 J P, the set of inverse iteratesS1
k¼k1

P�kðz1Þ
n o

is dense in J P for all whole number

k1 P 1.

To generate and display J c in the complex plane, it suf-
fices to take z1 2 J c and compute its inverse iteratively, up
to a maximum number of iterations. Since the inverse is
given by the complex square root function

ffiffiffiffiffiffiffiffiffiffiffi
z� c
p

which
is multivalued, two different approaches may be used.
The first one is to compute all branches of the inverse at
every iteration, leading to a great number of points gener-
ated. The second option is to randomly choose one of the
branches of the inverse at each iteration and compute only
this one. This last approach seems more appropriate for it
is faster and requires less memory space.

From [6], it is known that J c is the closure of the set of
repelling periodic points of Pc . Hence, for a starter z1, one
may choose a repelling fixed point of the polynomial
map if c – 1

4. If c ¼ 1
4, then z1 ¼ 1

2 is a good starter for the
algorithm since it is the only fixed point of Pc and known
to be in J c from [16]. For a good approximation of J c , a
high enough number of iterations is needed.

Images from Fig. 1 are those of classical Julia sets pro-
duced by the inverse iteration method. For c ¼ i;Kc is
known to be a dendrite that is compact set, pathwise con-
nected, locally connected, nowhere dense and that does
not separate the plane [2]. A dendrite set is equal to its
boundary and so Kc ¼ J c .

2.2. Bicomplex numbers

As presented in [18–20], bicomplex numbers arise from
the work of Segre [22] and are defined as follows:

BC ¼ faþ bi1 þ ci2 þ djja; b; c;d 2 Rg

where i2
1 ¼ i2

2 ¼ �1; j2 ¼ 1; i1i2 ¼ i2i1 ¼ j; i2j ¼ ji2 ¼ �i1 and
i1j ¼ ji1 ¼ �i2. Since we can write aþ bi1 þ ci2 þ dj as
ðaþ bi1Þ þ ðc þ di1Þi2, the set of bicomplex numbers can
be seen as

BC ¼ fz1 þ z2i2jz1; z2 2 Cði1Þg

where Cði1Þ is the set of complex numbers with imaginary

unit i1 : Cði1Þ ¼ fxþ yi1jx; y 2 R and i2
1 ¼ �1g. Hence, BC

corresponds to a kind of complexification of the usual
complex numbers. From [18], we can easily see that it is
a commutative unitary ring. The set of bicomplex numbers
is also sometimes denoted in the literature by C2;T;Mð2Þ
or by the following complex Clifford algebras
ClCð1;0Þ ffi ClCð0;1Þ.

An important property of bicomplex numbers is the
unique representation using the idempotent elements
e1 ¼ 1þj

2 and e2 ¼ 1�j
2 . In fact, 8w ¼ z1 þ z2i2 2 BC, we have

z1 þ z2i2 ¼ ðz1 � z2i1Þe1 þ ðz1 þ z2i1Þe2

¼ P1ðwÞe1 þP2ðwÞe2

where the projections P1;P2 : BC�!Cði1Þ are defined as
P1ðz1 þ z2i2Þ :¼ z1 � z2i1 and P2ðz1 þ z2i2Þ :¼ z1 þ z2i1.

The usual operations of addition and multiplication can
be done term-by-term using this representation:

(i) ðz1 þ z2i2Þ þ ðs1 þ s2i2Þ ¼ ½ðz1 � z2i1Þ þ ðs1 � s2i1Þ�e1þ
½ðz1 þ z2i1Þþ ðs1 þ s2i1Þ�e2.

(ii) ðz1 þ z2i2Þ � ðs1 þ s2i2Þ ¼ ½ðz1 � z2i1Þðs1 � s2i1Þ�e1þ
½ðz1 þ z2i1Þðs1 þ s2i1Þ�e2.

(iii) ðz1 þ z2i2Þn ¼ ðz1 � z2i1Þne1 þ ðz1 þ z2i1Þne2 for n ¼
0;1;2; . . ..

The real modulus of w ¼ z1 þ z2i2 2 BC is given by

jjwjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jz1j2 þ jz2j2

q
where j � j is the Euclidian norm in

Cði1Þ. Writing z1 ¼ aþ bi1 and z2 ¼ c þ di1, we have

jjwjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2 þ d2

p
which is the Euclidian norm in

R4.
The square root of a bicomplex number w ¼ z1 þ z2i2 is

given in terms of the complex square roots of its idempo-
tent components:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1 þ z2i2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1 � z2i1

p
e1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1 þ z2i1

p
e2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ðwÞ

p
e1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ðwÞ

p
e2:

C. Matteau, D. Rochon / Chaos, Solitons & Fractals 75 (2015) 272–280 273



Download English Version:

https://daneshyari.com/en/article/8254986

Download Persian Version:

https://daneshyari.com/article/8254986

Daneshyari.com

https://daneshyari.com/en/article/8254986
https://daneshyari.com/article/8254986
https://daneshyari.com

