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In this article, we introduce the adapted inverse iteration method to generate bicomplex
Julia sets associated to the polynomial map w? + c. The result is based on a full character-
ization of bicomplex Julia sets as the boundary of a particular bicomplex cartesian set and
the study of the fixed points of w? + c. The inverse iteration method is used in particular to

generate and display in the usual 3-dimensional space bicomplex dendrites.
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1. Introduction

Fractal sets created by iterative processes have been
greatly studied in the past decades (see [5,7,8,13]). After
being displayed in the complex plane, they became part
of the 3-dimensional space when Norton [14] gave
straightforward algorithms using iteration with quater-
nions. The quaternionic Mandelbrot set defined by the
quadratic polynomial of the form ¢? + ¢ was explored in
[10,11]. However, as established in [1], it seems that no
interesting dynamics could arise from this approach based
on the local rotations of the classical sets. Another set of
numbers revealed to be possibly more appropriate:
Bicomplex Numbers. In [19], the author used bicomplex
numbers to produce and display in 3D a Mandelbrot set
for the quadratic polynomial of the form w? + c. Filled-in
Julia sets were also generated using a method analogous
to the classical one in the complex plane [19,20]. Since
the bicomplex polynomial P.(w) = w? + c is the following
mapping of C?: (2 —2 +¢1,2212, + ¢;) where w=z;+
Zip == (z1,22) and ¢ =¢ +Glp = (C1,¢2), bicomplex
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dynamics is a particular case of dynamics of several com-
plex variables. More specifically, we note that this map-
ping is not a holomorphic automorphism of C2.

In this article, we study bicomplex Julia sets associated
with the quadratic polynomial w? + c. We give a specific
characterization of bicomplex Julia sets derived from a
more general result in terms of the boundary of a bicom-
plex cartesian set. This characterization allows an easy dis-
play in the usual 3D space. The study of the inverse iterates
and fixed points of w? 4 ¢ along with the characterization
previously introduced lead to the first generalization of
the inverse iteration method in two complex variables.
This method, well known in the complex plane to generate
Julia sets (see [4,15,17]), is used to generate and display in
3D a particular class of bicomplex Julia sets.

2. Preliminaries
2.1. Julia sets in the complex plane

Julia sets in the complex plane are defined according to
the behavior of the forward iterates of a rational function.
In this article, we restrict our study of Julia sets to a poly-
nomial map that is easy to work with and has a dynamical
system equivalent to the one of any polynomial map of
degree two: P.(z) = z?> + ¢ where z,c € C and c is fixed.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2015.02.027&domain=pdf
http://dx.doi.org/10.1016/j.chaos.2015.02.027
mailto:Claudia.Matteau@UQTR.CA
mailto:Dominic.Rochon@UQTR.CA
mailto:Dominic.Rochon@UQTR.CA
http://dx.doi.org/10.1016/j.chaos.2015.02.027
http://www.sciencedirect.com/science/journal/09600779
http://www.elsevier.com/locate/chaos

C. Matteau, D. Rochon/Chaos, Solitons & Fractals 75 (2015) 272-280 273

First, we consider its iterates and fixed points. Next, we
present some important and well known results about
Julia sets.

The forward iterates of P, are given by P°(z) =z and
P}z) = (Pc(2))™ = (Pco P" V)(z) for ne{1,2,...}. The
inverse iterates are defined as P.'(z):= (P.(2))"" =
{wecC|P.(w)=2} and P."(w):=P"(w))"" for me
{1,2,...}. The multivalued function \/z—c is associated
to P_'. The fixed points of P, are found by solving the equa-
tion P.(zo) = zo. A fixed point z; is said to be attractive if
0 < |2z| < 1, repelling if |2z >1 and indifferent if
|2zo| = 1. For ¢ =1, there is a single indifferent fixed point
zo = 1. Otherwise, there are two distinct fixed points and
at least one of them is repelling (see [16]).

Let K. = {z € C|{P.(2)},., is bounded} be the filled-in
Julia set associated to P.. The Julia set related to P. is
denoted by 7. and defined as either one of the following:

1. The boundary of the filled-in Julia set: 7, = 9K..

2. The set of points z € C for which the forward iterates
do not form a normal family at z (see [21] for details
on normal families of functions).

The second definition leads to the following theorem
that justifies the inverse iteration method. Note that it is
stated for Julia sets Jp defined by any monic polynomial
map P of degree d > 2. It is so valid for P.. In [12], the clas-
sical statement of the result has been slightly modified
from the one in [4].

Theorem 1. Let P be a monic complex polynomial of degree
d>= 2.

(i) If zo € Jp and V is any open neighborhood of z,, then
for any whole number k,; > 0 there exists N > ky such

that 7p C UL, P(V).
(ii) For any z;€ Jp, the set of inverse iterates

{U,?:,qP”‘(z])} is dense in Jp for all whole number
ki >1.

To generate and display 7. in the complex plane, it suf-
fices to take z; € J. and compute its inverse iteratively, up
to a maximum number of iterations. Since the inverse is
given by the complex square root function \/z — ¢ which
is multivalued, two different approaches may be used.
The first one is to compute all branches of the inverse at
every iteration, leading to a great number of points gener-
ated. The second option is to randomly choose one of the
branches of the inverse at each iteration and compute only
this one. This last approach seems more appropriate for it
is faster and requires less memory space.

From [6], it is known that 7. is the closure of the set of
repelling periodic points of P.. Hence, for a starter z;, one
may choose a repelling fixed point of the polynomial
map if ¢ # 1. If c =1, then z; =] is a good starter for the
algorithm since it is the only fixed point of P, and known
to be in J. from [16]. For a good approximation of 7., a
high enough number of iterations is needed.

Images from Fig. 1 are those of classical Julia sets pro-
duced by the inverse iteration method. For ¢ =i, K, is
known to be a dendrite that is compact set, pathwise con-
nected, locally connected, nowhere dense and that does
not separate the plane [2]. A dendrite set is equal to its
boundary and so K. = J..

2.2. Bicomplex numbers

As presented in [ 18-20], bicomplex numbers arise from
the work of Segre [22] and are defined as follows:

BC = {a + biy + ci +dj|a,b,c,d € R}

where i; = i3 = —1,j° = 1,iip = iziy = j, i2j = ji, = —i; and
i1j = ji; = —i,. Since we can write a-+ bi; +ci; +dj as
(a + biy) + (c + diy)ip, the set of bicomplex numbers can
be seen as

BC = {Z] +Zzi2|21./22 € C(i1)}

where C(i) is the set of complex numbers with imaginary
unit i; : C(iy) = {x +yi|x,y € R and i = —1}. Hence, BC
corresponds to a kind of complexification of the usual
complex numbers. From [18], we can easily see that it is
a commutative unitary ring. The set of bicomplex numbers
is also sometimes denoted in the literature by C,, T, M(2)
or by the following complex Clifford algebras
Cl:(1,0) = Cle(0,1).

An important property of bicomplex numbers is the
unique representation using the idempotent elements
e; =14 and e, = L. In fact, Yw = z; + 2,1, € BC, we have

21+ iy = (21 — ih)eq + (71 + 22iq )€,
=Pi(w)eg + Pr(w)e,

where the projections Py, P, : BC—C(i;) are defined as
P1 (Z] +Zzi2) =2Z1 — Zzi1 and 7)2(21 +Zzi2) =2 +Zzi1.

The usual operations of addition and multiplication can
be done term-by-term using this representation:

() (21 +22i2) + ($1 + S2h2) = [(Z1 — 2201) + (1 — S2dn)]@1+
[(Z] +Zzi1)+ (5] +52i1)]e2-
(ll) (Z] + Zziz) . (51 + Sziz) = [(Z] — ZZi])(S] —_ Szi1)]e1+
[(z1 + 221) (51 + S2i1)]€2.
(lll) (Z] +Zzi2)n = (Z] —Zzi])n61 + (Z] -‘rZzi])nez for n=
01,2, ..

The real modulus of w=z; + zi, € BC is given by

|[w|| = v/|z1]* + |z2|* where |-| is the Euclidian norm in
C(i1). Writing z; =a+bi; and z, =c+di;, we have
lw|| = Va2 + b° + ¢? + d* which is the Euclidian norm in
R4

The square root of a bicomplex number w = z; + 2,1, is
given in terms of the complex square roots of its idempo-
tent components:

\/21 + 230 = \/21 — 21 € +\/21 + 2i1 €2
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