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In this note, we will generalize the notion of separation index, which was introduced by
Manjunath et al. (2006), to dendrite maps, and use the notion to characterize the intra-
orbit separation for the orbits of continuous transitive dendrite maps. We will show: (i)
For a dendrite map f, the separation index ) is greater than zero if and only if the set of fixed

points of fis not an arc connected subspace. (ii) If the separation index 7 of a dendrite map f
is greater than zero, then for every 0 < T <y and any pair of distinct points x and y on a
dense orbit, {x,y} is a Li-Yorke pair of modulus .

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Let (X,d) be a metric space. For any A C X, denote by
diamA the diameter of A. For any y € X and any r > 0, write
B(y,r) = {x € X : d(y,x) < r}. Let N be the set of all positive
integers and Z, = NU {0}.

Denote by C°(X) the set of all continuous maps from X
to X. For any f € C°(X), let fO be the identity map of X
and f" = f o f*1 be the composition map of f and f*1. A
point x € X is called a periodic point of f with period n
(briefly called a n-periodic point of f) if f*(x) = x and
fi(x) #x for 1 <i<n. The orbit of x under f is the set
O(x,f)={f"(x):neZ,}. A 1-periodic point is generally
called a fixed point. The set of fixed points, n-periodic
points and periodic points of f is denoted by F(f), P.(f)
and P(f) respectively.

Let f € C°(X). If for every nonempty open subsets U and
V of X, there exists n € N such that f"(U) NV # 0, then the
map f is said to be topologically transitive (or just transi-
tive) and the system (X,f) is said to be topologically
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transitive. The definition of transitivity for compact metric
spaces is equivalent to the statement that X has a dense or-
bit under f (see [5,14]). Any point with dense orbit is called
a transitive point. Given a positive real number 7, a pair of
points {x,y} is called a Li-Yorke pair with modulus 7 (or
simply called a t-scrambled pair) if

limsup d(f"(x),f"(y)) > ©

n—oo

and
limiinf d(f" (x),f"(y)) = 0.

A set is said to be a scrambled set if any two distinct points
of the set form a Li-Yorke pair with some positive
modulus.

In [10], Manjunath et al. introduced the notion of intra-
orbit separation for the orbits of continuous transitive
maps on a compact interval to demonstrate separation of
two points on a given dense orbit. They associated a non-
negative real number y with a transitive interval map f
called the separation index of the map f. For a transitive
interval map f having at least two fixed points, they
showed: (i) the separation index 7 is positive, (ii) for every
0 < 7 < y and any pair of distinct points x and y on a dense
orbit, {x,y} is a Li-Yorke pair of modulus .
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In recent years, dynamical systems on dendrites have
been studied by many authors. The subjects such as the
topological structure of minimal sets, the depth of the cen-
ter, the topological entropy of dendrite maps are deeply
discussed (see [1-3,6-8,12]). The interest in these subjects
is motivated in part by the fact that dendrites appear as Ju-
lia sets in complex dynamics (see [4] or [13]). In [8], Kato
constructed a dendrite D and a continuous map f € C°(D)
such that R(f)#P(f), where R(f) is the set of recurrent
points of f. However, Mai and Shi [9] proved that if T is a
dendrite of which the cardinal number of endpoints is less
than ¢ (the cardinal number of the continuum), then
R(f) = P(f) for any f € C°(T).

A space homeomorphic to [0, 1] (resp. to the unit circle
S; in the complex plane C) is called an arc (resp. a circle). A
compact, connected and locally connected metric space is
called a Peano continuum. A Peano continuum which con-
tains no circle is called a dendrite. There are many known
properties of Peano continua and of dendrites (see [11]).
Let (T,d) be a nondegenerate dendrite. Every continuous
map f € C°(T) is called a dendrite map. For any x € T, de-
note by val(x) = val(x, T), called the valence of x in T, the
cardinal number of the family of connected components
of T — {x}. The point x is called an endpoint if val(x) =
Denote by E(T) the set of all endpoints of T. For any arc
A, we also write 0A for E(A). For any two different points
x,y €T, it is well known that there is a unique arc in T, de-
noted by [x,y] or [x,y];, such that 9[x,y] = {x,y}. Write
[x¥) =%l =[x.y] - {y}, and (x,y) = [x,y) — {x}. Denote
by T«(y) the connected component of T — {x} containing
y. In addition, we write [x,x] = x.

For any an arc [x,y] in T, write Ry, : T—[x,y] be the
retraction (called the first point map of T for [x,y], see
[11, P176]) such that [z,Ry(2)] N [X,y] = Ry (z) forany z € T.

In this note, we will generalize the notion of intra-orbit
separation for the orbits of transitive interval maps in [10]
to dendrite maps.

2. Intra-orbit separation for dendrite maps

To characterize the intra-orbit separation for a dendrite
map, we first introduce the following notion. Let T be a
dendrite and f € C%(T), define a subset S(f") of T for each
n € N as follows:

S ={xeT ~f”( x)#x, there is y € T such that [y, x]
clf'y )) and x € (y,f"(x))}.

For any x € S(f"), write

S M) ={yeT:yxC[f"y).f"x) and x € (y,f"(x))}.

From the compactness and the local connectivity it is
easy to show the following lemma.

Lemma 2.1 (see [9]). Let (T, d) be a dendrite. Then, for every
&> 0, there exists y = p(e) > 0 such that, for any x,y € T
with d(x,y) < u, diamx,y] < &.

The following Lemma 2.2 and Lemma 2.3 are from [9].

Lemma 2.2 (see [9]). Let [x,y] be an arc in a dendrite (T,d),
and w € [x,y). Let ¢ = d(w,y) and p = p(¢) be the same as in
Lemma 2.1. Then [x,v]D> [x,w] for any veT with
d(v,y) <

Lemma 2.3 (see [9]). Let f € C°(T) and x € T with x # f(x).
Then Tx(f(x)) NF(f) # 0.

Lemma 24. Let f € C°(T). Then S(x,f*) NF(f")=0 for any
neN.

Proof. Let y e S(x,f"). Then [y,x] C [f"(¥),f™( and
x € (¥,f*(x)). Since f"([y,x)) D [y, ], there ex1sts a sequence
of pointsz; = y,...,Zm,... € [y,X) satisfying z; € [y, z,1] and
f"(zj:1) =z for each j > 1. Let limy,_.Zm = p. It is obvious
that f"(p) = p € [y, x), which implies p € S(x,f") N F(f*). O

Remark 2.5. 1t is obvious that S(f")NE(T) =0 and
S(x,f") \ F(f") c S(f") for any n € N.

Proposition 2.6. Let f € C°(T) and S(f)=0. Then S(x,f) is a
closed subset of T for any x € S(f).

Proof. let xeS(f) and a sequence of points
Y1,Ya,--- € S(x,f) satisfying lim,_...y, = y. it is easy to show
y # X (otherwise, if y = x, then there is a large n such that
Vo, XI N [f(¥,),f(x)) = 0, which is a contradiction).

We claim Rys(x) (v) = x. Indeed, if Rys,) (¥) # x, then

diam(y,,y] = diam{[y,, x] U [X, Ry (¥)] U [Ryx) (), Y1}
> diam [X7 RXf(X) (y)]7

which with Lemma 2.1 implies lim,_..y, # ¥, a contradic-
tion. In a similar fashion, we may show Ry (f(¥)) = x.

Now we show Ry (f(y)) = y. Indeed, if Ryx(f(y)) # y, then
according to Lemma 2.2 and continuity of f we may
suppose that:

(1) There is u € (y,Ryx(f(¥))) such that [y,f(y,)] D [y, u]
for any n € N.
(2) Ryx(¥n) € [y, u] for any n € N. Thus

dlam[fyn } dlam{[f(yn .VTJ U D’m 'YX yn]
U [Rx(Wn), R (fF¥)] U R (F)).f )]}
> diam[Ryx(V,), Ryx (f ())]-
Since
diam(y,,y] = diam{[y,, Ryx ()] U [Ryx (¥), ¥I}

> diam[Ry(v,), Y]

and lim,_..y, =¥, we have lim,_..R(y,) = y, which with
Lemma 2.1 implies lim,_..f(v,) # f(y), a contradiction.

Therefore y € S(x,f) and S(x,f) is a closed subset of
T. O
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