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a b s t r a c t

In this note, we will generalize the notion of separation index, which was introduced by
Manjunath et al. (2006), to dendrite maps, and use the notion to characterize the intra-
orbit separation for the orbits of continuous transitive dendrite maps. We will show: (i)
For a dendrite map f, the separation index c is greater than zero if and only if the set of fixed
points of f is not an arc connected subspace. (ii) If the separation index c of a dendrite map f
is greater than zero, then for every 0 < s < c and any pair of distinct points x and y on a
dense orbit, fx; yg is a Li–Yorke pair of modulus s.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Let ðX; dÞ be a metric space. For any A � X, denote by
diamA the diameter of A. For any y 2 X and any r > 0, write
Bðy; rÞ ¼ fx 2 X : dðy; xÞ < rg. Let N be the set of all positive
integers and Zþ ¼ N [ f0g.

Denote by C0ðXÞ the set of all continuous maps from X
to X. For any f 2 C0ðXÞ, let f 0 be the identity map of X
and f n ¼ f � f n�1 be the composition map of f and f n�1. A
point x 2 X is called a periodic point of f with period n
(briefly called a n-periodic point of f ) if f nðxÞ ¼ x and
f iðxÞ– x for 1 6 i < n. The orbit of x under f is the set
Oðx; f Þ � ff nðxÞ : n 2 Zþg. A 1-periodic point is generally
called a fixed point. The set of fixed points, n-periodic
points and periodic points of f is denoted by Fðf Þ, Pnðf Þ
and Pðf Þ respectively.

Let f 2 C0ðXÞ. If for every nonempty open subsets U and
V of X, there exists n 2 N such that f nðUÞ \ V – ;, then the
map f is said to be topologically transitive (or just transi-
tive) and the system ðX; f Þ is said to be topologically

transitive. The definition of transitivity for compact metric
spaces is equivalent to the statement that X has a dense or-
bit under f (see [5,14]). Any point with dense orbit is called
a transitive point. Given a positive real number s, a pair of
points fx; yg is called a Li–Yorke pair with modulus s (or
simply called a s-scrambled pair) if

lim sup
n!1

dðf nðxÞ; f nðyÞÞ > s

and

lim inf
n!1

dðf nðxÞ; f nðyÞÞ ¼ 0:

A set is said to be a scrambled set if any two distinct points
of the set form a Li–Yorke pair with some positive
modulus.

In [10], Manjunath et al. introduced the notion of intra-
orbit separation for the orbits of continuous transitive
maps on a compact interval to demonstrate separation of
two points on a given dense orbit. They associated a non-
negative real number c with a transitive interval map f
called the separation index of the map f . For a transitive
interval map f having at least two fixed points, they
showed: (i) the separation index c is positive, (ii) for every
0 < s < c and any pair of distinct points x and y on a dense
orbit, fx; yg is a Li–Yorke pair of modulus s.
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In recent years, dynamical systems on dendrites have
been studied by many authors. The subjects such as the
topological structure of minimal sets, the depth of the cen-
ter, the topological entropy of dendrite maps are deeply
discussed (see [1–3,6–8,12]). The interest in these subjects
is motivated in part by the fact that dendrites appear as Ju-
lia sets in complex dynamics (see [4] or [13]). In [8], Kato
constructed a dendrite D and a continuous map f 2 C0ðDÞ
such that Rðf Þ–Pðf Þ, where Rðf Þ is the set of recurrent
points of f . However, Mai and Shi [9] proved that if T is a
dendrite of which the cardinal number of endpoints is less
than c (the cardinal number of the continuum), then
Rðf Þ ¼ Pðf Þ for any f 2 C0ðTÞ.

A space homeomorphic to ½0;1� (resp. to the unit circle
S1 in the complex plane C) is called an arc (resp. a circle). A
compact, connected and locally connected metric space is
called a Peano continuum. A Peano continuum which con-
tains no circle is called a dendrite. There are many known
properties of Peano continua and of dendrites (see [11]).
Let ðT; dÞ be a nondegenerate dendrite. Every continuous
map f 2 C0ðTÞ is called a dendrite map. For any x 2 T, de-
note by val(x) = val(x; TÞ, called the valence of x in T, the
cardinal number of the family of connected components
of T � fxg. The point x is called an endpoint if val(xÞ ¼ 1.
Denote by EðTÞ the set of all endpoints of T . For any arc
A, we also write @A for EðA). For any two different points
x; y 2 T , it is well known that there is a unique arc in T, de-
noted by ½x; y� or ½x; y�T , such that @½x; y� ¼ fx; yg. Write
½x; yÞ ¼ ðy; x� ¼ ½x; y� � fyg, and ðx; yÞ ¼ ½x; yÞ � fxg. Denote
by TxðyÞ the connected component of T � fxg containing
y. In addition, we write ½x; x� ¼ x.

For any an arc ½x; y� in T , write Rxy : T�!½x; y� be the
retraction (called the first point map of T for ½x; y�, see
[11, P176]) such that ½z;RxyðzÞ� \ ½x; y� ¼ RxyðzÞ for any z 2 T .

In this note, we will generalize the notion of intra-orbit
separation for the orbits of transitive interval maps in [10]
to dendrite maps.

2. Intra-orbit separation for dendrite maps

To characterize the intra-orbit separation for a dendrite
map, we first introduce the following notion. Let T be a
dendrite and f 2 C0ðTÞ, define a subset Sðf nÞ of T for each
n 2 N as follows:

Sðf nÞ ¼ fx 2 T : f nðxÞ–x; there is y 2 T such that ½y; x�
� ½f nðyÞ; f nðxÞÞ and x 2 ðy; f nðxÞÞg:

For any x 2 Sðf nÞ, write

Sðx; f nÞ ¼ fy 2 T : ½y; x� � ½f nðyÞ; f nðxÞÞ and x 2 ðy; f nðxÞÞg:

From the compactness and the local connectivity it is
easy to show the following lemma.

Lemma 2.1 (see [9]). Let ðT; dÞ be a dendrite. Then, for every
e > 0, there exists l ¼ lðeÞ > 0 such that, for any x; y 2 T
with dðx; yÞ 6 l, diam½x; y� < e.

The following Lemma 2.2 and Lemma 2.3 are from [9].

Lemma 2.2 (see [9]). Let ½x; y� be an arc in a dendrite ðT; dÞ,
and w 2 ½x; yÞ. Let e ¼ dðw; yÞ and l ¼ lðeÞ be the same as in
Lemma 2.1. Then ½x;v� � ½x;w� for any v 2 T with
dðv ; yÞ 6 l.

Lemma 2.3 (see [9]). Let f 2 C0ðTÞ and x 2 T with x – f ðxÞ.
Then Txðf ðxÞÞ \ Fðf Þ– ;.

Lemma 2.4. Let f 2 C0ðTÞ. Then Sðx; f nÞ \ Fðf nÞ–; for any
n 2 N.

Proof. Let y 2 Sðx; f nÞ. Then ½y; x� � ½f nðyÞ; f nðxÞÞ and
x 2 ðy; f nðxÞÞ. Since f nð½y; xÞÞ � ½y; x�, there exists a sequence
of points z1 ¼ y; . . . ; zm; . . . 2 ½y; xÞ satisfying zj 2 ½y; zjþ1� and
f nðzjþ1Þ ¼ zj for each j P 1. Let limm!1zm ¼ p. It is obvious
that f nðpÞ ¼ p 2 ½y; xÞ, which implies p 2 Sðx; f nÞ \ Fðf nÞ. h

Remark 2.5. It is obvious that Sðf nÞ \ EðTÞ ¼ ; and
Sðx; f nÞ n Fðf nÞ � Sðf nÞ for any n 2 N.

Proposition 2.6. Let f 2 C0ðTÞ and Sðf Þ–;. Then Sðx; f Þ is a
closed subset of T for any x 2 Sðf Þ.

Proof. Let x 2 Sðf Þ and a sequence of points
y1; y2; . . . 2 Sðx; f Þ satisfying limn!1yn ¼ y. it is easy to show
y – x (otherwise, if y ¼ x, then there is a large n such that
½yn; x� \ ½f ðynÞ; f ðxÞÞ ¼ ;, which is a contradiction).

We claim Rxf ðxÞðyÞ ¼ x. Indeed, if Rxf ðxÞðyÞ – x, then

diam½yn; y� ¼ diamf½yn; x� [ ½x;Rxf ðxÞðyÞ� [ ½Rxf ðxÞðyÞ; y�g
P diam ½x;Rxf ðxÞðyÞ�;

which with Lemma 2.1 implies limn!1yn – y, a contradic-
tion. In a similar fashion, we may show Rxf ðxÞðf ðyÞÞ ¼ x.

Now we show Ryxðf ðyÞÞ ¼ y. Indeed, if Ryxðf ðyÞÞ – y, then
according to Lemma 2.2 and continuity of f we may
suppose that:

(1) There is u 2 ðy;Ryxðf ðyÞÞÞ such that ½y; f ðynÞ� � ½y;u�
for any n 2 N.
(2) RyxðynÞ 2 ½y;u� for any n 2 N. Thus

diam½f ðynÞ; f ðyÞ� ¼ diamf½f ðynÞ; yn� [ ½yn;RyxðynÞ�
[ ½RyxðynÞ;Ryxðf ðyÞÞ� [ ½Ryxðf ðyÞÞ; f ðyÞ�g

P diam½RyxðynÞ;Ryxðf ðyÞÞ�:

Since

diam½yn; y� ¼ diamf½yn;RyxðynÞ� [ ½RyxðynÞ; y�g
P diam½RyxðynÞ; y�

and limn!1yn ¼ y, we have limn!1RyxðynÞ ¼ y, which with
Lemma 2.1 implies limn!1f ðynÞ – f ðyÞ, a contradiction.

Therefore y 2 Sðx; f Þ and Sðx; f Þ is a closed subset of
T. h
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