Chaos, Solitons & Fractals 57 (2013) 137-145

journal homepage: www.elsevier.com/locate/chaos

Contents lists available at ScienceDirect

Chaos, Solitons & Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena

Homoclinic orbits for second-order Hamiltonian systems with

subquadratic potentials ™

Ying Lv, Chun-Lei Tang *

@ CrossMark

School of Mathematics and Statistics, Southwest University, Chongqing 400715, PR China

ARTICLE INFO

ABSTRACT

Article history:

Received 9 September 2013
Accepted 26 September 2013
Available online 1 November 2013

In this paper we consider a class of subquadratic second-order Hamiltonian systems and
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the Minimizing Theorem and the Clark’s Theorem respectively and a new compact imbed-
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1. Introduction and main result

Consider the following second order nonautonomous
Hamiltonian systems

ii(t) — L(tyu(t) + VW(t,u(t)) = 0 1)

where L € C(RR") is a symmetric matrix valued function,
We CY(RxRVR). We say that a nonzero solution u of
problem (1) is homoclinic (to 0) if u(t) — 0 as |t| - cc.

In the last two decades, the existence and multiplicity of
homoclinic orbits for Hamiltonian systems have been inten-
sively studied by many mathematicians. Indeed the exis-
tence of homoclinic orbits for Hamiltonian systems and
their importance in the study of the behavior of dynamical
systems have been recognized from Poincaré [1]. If L(t)
and W(tx) are independent of t or periodic in t, many
authors have studied the existence of homoclinic orbits for
Hamiltonian systems, see for instance [2-9] and a more gen-
eral case is considered in recent papers [ 10-13]. In this case,
the existence of homoclinic orbits is obtained by going to the
limit of periodic solutions of approximating problems. In re-
cent years, Concentration Compactness Principle has also
been widely used to deal with the perturbation of periodic
or autonomous problems, for example [14,15].
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If L(t) and W(t,x) are neither autonomous nor periodic,
the problem is quite different from the ones just described,
because of the lack of compactness of the Sobolev embed-
ding. Rabinowitz and Tanaka [16] study without any peri-
odicity assumption and obtain the existence of homoclinic
orbits of problem (1) by using a variant of the Mountain
Pass Theorem without the Palais-Smale condition, under
the following condition.

(L) L € C(R, RNZ) is a symmetric and positively definite
matrix for all t € R and there exists a continuous function
I:R — R such that [(t) > 0 for all t € R and

(L(D)x,x) = L(t)[x]%, 1(t) — oo as |t| — oco.

Assuming coercivity assumption (L), Omana and Willem
[17] obtain an improvement on the latter result by
employing a new compact embedding theorem, in fact,
they show that the (PS) condition is satisfied and obtain
the existence and multiplicity of homoclinc orbits of prob-
lem (1) by using the usual Mountain Pass Theorem. Under
condition (L) some other cases are considered in recent pa-
pers, for example [18-21]. However, it is frequent occur-
rence that the global positive definiteness of L(t) is not
satisfied. In [22], defining the smallest eigenvalue of L(t)
as following

I(t) = Inf (L(t)x,x),

and assuming I(t) satisfies
(L:) there exists a constant ¢ < 2 such that

(1)t — +o0


http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2013.09.007&domain=pdf
http://dx.doi.org/10.1016/j.chaos.2013.09.007
mailto:tangcl@swu.edu.cn
mailto:tangcl8888@sina.com
http://dx.doi.org/10.1016/j.chaos.2013.09.007
http://www.sciencedirect.com/science/journal/09600779
http://www.elsevier.com/locate/chaos

138 Y. Lv, C-L. Tang/Chaos, Solitons & Fractals 57 (2013) 137-145

as |t| — oo, the author investigates the existence and mul-
tiplicity of homoclinic orbits of problem (1) for the case
that L(t) is unnecessary uniformly positively definite for
all t € R, which has been complemented by [23-28]. Kor-
man and Lazer [29] remove the technical coercivity in
the case that L(t) and W(t,x) are even in t, by approximating
homoclinic orbits from solutions of boundary value prob-
lems, which is complemented by Lv and Tang [30]. Re-
cently, Tang and Lin [31], Yuan and Zhang [32] obtain the
existence of homoclinic orbits of problem (1) under the
condition that L is uniformly definite and bounded from
below without the coercivity and even assumption.

Most of papers above treat the superquadratic case (see
[2-18,21-23,25,27,28,32]) and some papers treat the sub-
quadratic case (see[18-22,25,28,31]). In this paper, we will
consider the existence and multiplicity of homoclinic or-
bits for subquadratic second-order Hamiltonian systems.
Here, we list the respect results in [19,20,31] specifically.

Theorem A [19, Theorem 1.1]. Assume that L satisfies (L)
and W satisfies(H;) W(t,x)=a(t)|x|, a:R — R" is a positive
continuous function such that

a € L*(R.R) NI (R,R)

and 1<r<2is a constant.
Then problem (1) possesses a nontrivial homoclinic
orbit.

Theorem B [20, Theorem 1.2]. Assume that L satisfies (L)
and W satisfies(H;) W(tx)=a(t)|x|" where a:R - R" is a
continuous function such that

a e L77(R.R)

and 1<r<2is a constant.

Then problem (1) possesses infinitely many homoclinic
orbits. But in fact in Theorem B the condition respect to a is
not sufficient and the condition that a is positive is used in
the proof of the Lemma 3.1 in [20].

Theorem C [31, Theorem 1.1]. Assume that L satisfies(L’)
L e C(RRN*N) is definite symmetric matrix for all t € R and
there exists a constant > 0 such that

(Lt x) > Blx?

forall (tx) € R x RN;
and W satisfies(Hs) There ezzxist two constants 1 <r; <ry<2and
two functions a1, a, € L7 (R, [0, +00)) such that

IW(t.x) < a(0)x"
for all (tx) e R x RV,|x| < 1, and
IW(t,x)] < az(t)|x|”

forall (tx) e R x RV|x| > 1;
(H,) There exist two functions b € L¥ > (R, [0, +o0)) and
@ € ([0, + 20),[0, + >0)) such that

IVW(t,x)| < b(t)p(Jx])

for all (tx) € R x RN, where ¢(s) = O(s""') as s — 07;
(Hs) There exist an open set | C R and two constantsrz € (1,2)
and n > 0 such that

W(t,x) = nix|”

for all (tx)e] x RV, |x| < 1.

Then problem (1) has at least one nontrivial homoclinic
orbit. Moreover if.

(Hg) W(t, — x) = W(tx) for all (t,x) € R x RN

Then problem (1) has infinitely many homoclinic orbits.

The main purpose of this paper is to generalize and im-
prove the results in [19,20,31]. We first prove a new com-
pact embedding theorem under condition (L") and then we
obtain the existence and multiplicity of homoclinic orbits
of problem (1) by assuming W satisfies a kind of subqua-
dratic condition which is different from the ones in [18-
22,25,28,31]. Our main results are the following theorems.

Theorem 1. Assume that L satisfies (L') and W satisfies the
following conditions(W;) There exist three constants

5>0, 1 €(1,2), sle(l,ﬁ] and a
a; € L'(R, [0, +o0)) such that

VW (%) < ar(6)x]"

forall t € R and x € RN with |x| < ;(W>) There exist three con-
stants M >0, r; € (1,2), sz € (1,%] and a function
a; € L% (R, [0, +00)) such that

(W(t,x)] < az(t)|x|

for all t R and x € RN with |x| > M;(W3) For every m >,
there exist s3> 1 and b,, € L® (R, [0, +00)) such that

[IVW(t,x)| < bn(t)

forall t € R and x e RN with |x| < m;(W,) There exist constants
r4€ (1,2), n>0 and { > 0 such that

function

W(t.x) > nlx|™

for all t € Q and x € RN with |x| < {, where meas{Q} > 0.
Then problem (1) possesses a nontrivial homoclinic
orbit.

Theorem 2. Assume that L satisfies (L') and W satisfies (W),
(Ws), (Ws3), (Wy) and (Hg). Then problem (1) has infinitely
many homoclinic orbits.

Remark 1. Theorem 2 unifies and improves Theorems A, B
and C. To show this, it suffices to show that Theorem 2
improves Theorem C, for Theorems A and B are special
cases of Theorem C. (W;) and (W3) can be implied by
(H4) and are real weaker than (Hs). VW(t,x) is globally con-
trolled by b(t)¢p(|x|) in (H4), while (W3) is a local condition. J
is an open set in (Hs), while Q is just assumed to be a set
with positive measure in (Wy). In our theorems ry and r;
are separately defined, while r; is assumed to be lesser
than r, in Theorem C. The sets of ag; in our theorems are
much larger than the ones igl Theorem C. In Theorem C
the authors assume a; € L1, while in our theorems
a; € I’ for some s; € (1,2%rl]. There are some functions L
and W which satisfy Theorems 1 and 2, but do not satisfy
the corresponding results in [18-22,25,28,31] for example

L(t) =1y, W(t,x) = a(t)|x3, (2)
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