
Waves and statics for functionally graded materials and laminates q

D.F. Parker *

School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, EH9 3JZ, UK

a r t i c l e i n f o

Article history:
Available online 12 May 2009

Communicated by K.R. Rajagopal

Keywords:
Transverse isotropy
Surface wave
Functionally graded plates

a b s t r a c t

It is shown here that, for any laminated stacking of elastic materials which are transversely
isotropic with respect to an axis Oz, having elastic moduli which may depend either con-
tinuously or discontinuously on the coordinate z, surface-guided disturbances at any fre-
quency are governed by the reduced membrane equation. An analogous treatment of the
statics of plates having the same structure, yields the static theory of functionally graded
plates due originally to Spencer et al. Thus, for functionally graded transversely isotropic
plates with traction-free surfaces, displacements have a structure closely analogous to
dynamic disturbances and are represented in terms of solutions to the biharmonic
equation.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The static theory of linearly elastic functionally graded and laminated plates was initiated by Kaprielian et al. [1] and
developed by Tony Spencer and co-workers (see [2,3] and references therein). In this theory, the material is, at each point,
taken to be isotropic, but with Lamé constants and density depending upon the through-thickness coordinate. More recently,
it has been shown [4] that time-harmonic surface waves and plate waves in a transversely isotropic medium may be related
to a solution of the reduced membrane equation (the Helmholtz equation in two dimensions). Following the recent [5] rec-
ognition that a rotational invariance of material properties is the key to this result, it is now clear that a similar reduction to a
scalar equation is possible for waves in all plates and half-spaces which locally are transversely isotropic. The density and
elastic moduli may vary continuously or discontinuously as functions of the cartesian coordinate z, so describing functionally
graded or laminated media.

Besides recording this generalization of Achenbach’s result and of those of Kiselev [6,7] and coworkers, this paper links
the dynamic theory to the static theory which owes so much to Tony Spencer. In particular, for traction-free plates formed of
any stacking of transversely isotropic, functionally graded materials, displacements are described through a solution to the
biharmonic equation and are closely analogous to other solutions found by Spencer [8] and based upon plane and anti-plane
strain. The paper also reveals a hierarchy of solutions, as shown by England [9], in which transverse loads are solutions to
Laplace’s equation, the biharmonic equation, etc.

2. Uni-directional waves in functionally graded materials

Using linear elasticity theory, the components tij of Cauchy stress are related to the displacement components uiðx; tÞ
through tij ¼ cijlmul;m, where x1; x2 and x3 � z are Cartesian coordinates, cijlm are the elastic moduli and ;j denotes partial
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differentiation with respect to xj. The moduli cijlm and density q are allowed to be continuous or discontinuous functions of
the coordinate z, either in the half-space z � x3 > 0 or within a plate 0 < z < h. In a uniform half-space z P 0, the standard
surface wave (a Rayleigh wave) is a solution of the Euler equation tij;j ¼ q€ui in z > 0, the traction-free boundary condition
ti3 ¼ 0 at z ¼ 0 and the decay condition u! 0 as z! 0, with displacements depending on only the depth z and a travelling
wave coordinate x1 � ct. Here, a dot denotes partial differentiation with respect to time t and the constant c is the propaga-
tion speed. The displacement field and speed c are found by seeking uj ¼ ReUjðz; kÞeikðx1�ctÞ, so yielding a system of constant
coefficient differential equations. c is then determined (uniquely) so as to ensure compatibility between the traction-free and
decay conditions. It has been shown [4,5] how these solutions may be generalized to give solutions in which
u3 ¼ Reŵðx1; x2ÞU3ðz; kÞe�ikct, where ŵðx1; x2Þ is any solution to the reduced membrane equation. Here, following steps used
in [5] yields a similar result for transversely isotropic media with Oz as symmetry axis and with density and elastic coeffi-
cients being any piecewise continuous functions of z.

Let z ¼ zp; ðp ¼ 1;2; . . . PÞ be the only locations at which either the density and/or the elastic coefficients are discontinu-
ous. The governing system is then

tij;j ¼ q€ui in z > 0; z – zp ðp ¼ 1;2; . . . ; PÞ; ð2:1Þ
with traction-free condition

ti3 � ci3lmul;m ¼ 0 at z ¼ 0; ð2:2Þ

continuity conditions

½½ti3�� ¼ 0 ; ½½ui�� ¼ 0 at z ¼ zp ð2:3Þ

and the decay condition u! 0 as z!1. Here, ½½ �� denotes the jump in a quantity at z ¼ zp. For transversely isotropic mate-
rials, the elastic moduli are such that the stress components have the form

t11 ¼ C11u1;1 þ C12u2;2 þ C13u3;3; t23 ¼ t32 ¼ C44ðu2;3 þ u3;2Þ;
t22 ¼ C12u1;1 þ C11u2;2 þ C13u3;3; t13 ¼ t31 ¼ C44ðu3;1 þ u1;3Þ;
t33 ¼ C13ðu1;1 þ u2;2Þ þ C33u3;3; t12 ¼ t21 ¼ C66ðu1;2 þ u2;1Þ;

with C66 ¼
1
2
ðC11 � C12Þ: ð2:4Þ

Then, seeking travelling waves of the form u ¼ ReUðz; kÞeih, t ¼ ReTðz; kÞeih, where h � kx1 �xt yields (with
U ¼ Uðz; kÞe1 þ Vðz; kÞe2 þWðz; kÞe3) from (2.1) the ordinary differential equations in z > 0 (z – zp)

½C44ðU0 þ ikWÞ�0 þ ikC13W 0 þ ðx2q� k2C11ÞU ¼ 0; ð2:5Þ
½C44V 0�0 þ ðx2q� k2C66ÞV ¼ 0 ð2:6Þ

and

½C33W 0 þ ikC13U�0 þ ikC44U0 þ ðx2q� k2C44ÞW ¼ 0: ð2:7Þ

Here, primes denote ordinary differentiation with respect to z. At each location z ¼ zp, the continuity conditions (2.3) yield

½½C44ðU0 þ ikWÞ�� ¼ 0 ¼ ½½C44V 0�� ¼ ½½C33W 0 þ ikC13U��;
½½U�� ¼ ½½V �� ¼ ½½W�� ¼ 0;

ð2:8Þ

while, at the traction-free surface z ¼ 0, the conditions are

C44ðU0 þ ikWÞ ¼ 0 ¼ C44V 0 ¼ C33W 0 þ ikC13U: ð2:9Þ

Also, decay is ensured by choosing U;V ;W ! 0 as z!1. For waves in a plate 0 < z < h, the decay condition is replaced by
Eq. (2.9) at z ¼ h.

Either for a half-space z > 0 or for a plate, transverse (shear-horizontal) displacements U ¼ Vðz; kÞe2 are seen to uncouple
from the in-plane (sagittally-polarized) displacements U ¼ Uðz; kÞe1 þWðz; kÞe3. In a uniform half-space, the only solutions
are the Rayleigh wave, with V � 0, with U and W specific linear combinations of two decaying exponentials and with c � x=k
equal to the Rayleigh wave speed cR. In a uniform half-space z > h with a dissimilar adjoining layer 0 < z < h, Love waves
have transverse displacement V decaying in z > h, but oscillatory in the layer. The explicit solutions

VðzÞ ¼ cos b̂z 0 6 z 6 h;

cos b̂h e�bðz�hÞ h 6 z;

(
U ¼W ¼ 0; ð2:10Þ

where b̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq̂x2 � Ĉ66k2Þ=Ĉ44

q
and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC66k2 � qx2Þ=C44

q
(with hats denoting density and elastic moduli in the layer)

show that x is related to k through the dispersion relation Ĉ44b̂ tan b̂h ¼ C44b. Since, C44b
2 ¼ ðC66 � qĈ66=q̂Þk2 þ ðqĈ44=q̂Þb̂2,

this shows that the waves are dispersive (b̂=k depends upon k so that x=k is not constant). Also, these waves exist in many
modes, with Vðz; kÞ having 0;1;2; . . . zeros within the layer. Moreover, in these same materials, sagitally-polarized waves gen-
eralizing Rayleigh waves also exist – with many modes corresponding to a chosen value of k, each being dispersive.
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