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a b s t r a c t

This pap er analyzes, in terms of critical transitions, the phase spaces of biological dynam- 
ics. The phase space is the space where the scientific description and determination of a
phenomenon is given. We argue that one major aspect of biological evolutio n is the contin- 
ual change of the pertinent phase space and the unpr edictability of these chan ges. This 
analysis will be based on the theoretical symmetries in biology and on their critical insta- 
bility along evolution. 

Our hypothesis deeply modifies the tools and concepts used in physical theorizing, when 
adapted to biology. In particular, we argue that causality has to be understood differently, 
and we discuss two notions to do so: differential causality and enablement. In this context 
constraints play a key role: on one side, they restrict possibilities, on the other, they enabl e
biological systems to integrate changing constraints in their organization, by correlated 
variations, in un-prestatable ways. This corresponds to the formation of new phenotypes 
and organisms. 

� 2013 Elsevier Ltd. All rights reserved. 

1. Introduction 

As extensively stressed by Weyl and van Fraassen, XXth 
century physics has been substitut ing to the concept of law 
that of symmetr y. Thus, this concept may be ‘‘considered 
the principal means of access to the world we create in 
theories’’ [56].

In this text, 1 we will discuss the question of biological 
phase spaces in relation to critical transition s and symme- 
tries. More precisely, we will argue, along the lines of 
[27,8,37], that in contrast to existing physical theories, 
where phase spaces are pre-given, in biology these spaces 
need to be analyzed as changin g in unpredictab le ways 

through evoluti on. This stems from the peculiar biological 
relevance of critical transitions and the related role of sym- 
metry changes. 

In order to understand the peculiarities of biological 
theorizing, we will first shortly recall the role, in physics, 
of ‘‘phase spaces’’. A phase space is the space of the perti- 
nent observabl es and parameters in which the theoretical 
determination of the system takes place. As a result, to 
one point of the phase space corresponds a complete deter- 
mination of the intended object and propertie s that are rel- 
evant for the analysis. 

Aristotle and Aristotelian s, Galileo and Kepler closely 
analyzed trajectories of physical bodies, but without a
mathematical theory of a ‘‘background space’’. In a sense, 
they had the same attitude as Greek geomete rs: Euclid’s 
geometry is a geometry of figures with no space. It is fair 
to say that modern mathematical physics (Newton) begun 
by the ‘‘embedding ’’ of Kepler and Galileo’s Euclidean tra- 
jectories in Descartes’ spaces. More precisely, the conjunc- 
tion of these spaces with Galileo’s inertia gave the early 
relativistic spaces and their invariant propertie s, as a frame 
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for all possible trajector ies — from falling bodies to revol- 
ving planets. 2 In modern terms, Galileo’s symmetry group 
describes the transformat ions that preserve the equational 
form of physical laws, as invariants , when changing the ref- 
erence system. 

Along these lines, one of the major challenges for a (the-
oretical) physicist is to invent the pertinent space or, more 
precisely, to construct a mathemati cal space which con- 
tains all the required ingredients for describin g the phe- 
nomena and to understand the determinati on of its 
trajectory, if any. So, Newton’s analysis of trajectories 
was embedded in a Cartesian space, a ‘‘conditio n of possi- 
bility’’, Kant will explain, for physics to be done. By this, 
Newton unified (he did not reduce) Galileo’s analysis of 
falling bodies, including apples, to planetary orbits: New- 
ton derived Kepler’s ellipsis of a planet around the Sun 
from his equations. This is the astonishing birth of modern 
mathematical -physics as capable of predicting exactly the 
theoretical trajectory, once given the right space and the 
exact boundary condition s. But, since Poincaré, we know 
that if the planets around the Sun are two or more, predic- 
tion is impossibl e due to determinist ic chaos. Even though 
their trajectories are fully determined by Newton–Laplace 
equations their non-linea rity yields the absence almost 
everywhere of analytic solutions and forbids predictabi lity, 
even along well determined trajectories at equilibriu m. 

As a matter of fact, Poincaré’s analysis of chaotic 
dynamics was essentially based on his invention of the 
so-called Poincaré section (analyze planetary orbits only 
by their crossing a given plane) and by the use of momen- 
tum as a key observable. In his analysis of chaoticity, stable 
and unstable trajectories in the position-m omentum phase
space, nearly intersect infinitely often, in ‘‘infinitely tight 
meshes’’ and are also ‘‘folded upon themselves without 
ever intersecting themselv es’’, (1892). Since then, in phys- 
ics, the phase space is mostly given by all possible values of 
momentum and position, or energy and time. In Hamilto- 
nian classical mechanics and in Quantum Physics, these 
observables and variables happen to be ‘‘conjugated’’, a
mathematical expression of their pertinence and tight rela- 
tion.3 These mathemati cal spaces are the spaces in which 
the trajector ies are determined : even in Quantum Physics, 
when taking Hilbert’s spaces as phase spaces for the wave 
function, Schrödinger’s equation determines the dynamics 
of a probabilit y density and the indeter ministic aspect of 
quantum mechan ics appears when quantum measuremen t
projects the state vector (and gives a probabilit y, as a real 
number value).

It is then possible to give a broader sense to the notion 
of phase space. For thermodynam ics, say, Boyle, Carnot and 
Gay-Lussac decided to focus on pressure, volume and tem- 
perature, as the relevant observables : the phase space for 
the thermodyna mic cycle (the interesting ‘‘trajectory’’ )
was chosen in view of its pertinenc e, totally disregarding 
the fact that gases are made out of particles. Boltzmann la- 

ter unified the principles of thermod ynamics to a particle’s 
viewpoint and later to Newtonian trajectories by adding 
the ergodic hypothes is. Statistical mechanics thus, is not 
a reduction of thermodynam ics to Newtonian trajectories, 
rather an ‘‘asymptotic’’ unification, at the infinite time lim- 
it of the thermodyna mic integral, under the novel assump- 
tion of ‘‘molecular chaos’’ (ergodicity). In statistical 
mechanics, ensemble s of random objects are considered 
as the pertinent objects, and observabl es are derived as as- 
pects of their (parameterized) statistics. 

It should be clear that, while the term phase space is of- 
ten restricted to a position/moment um space, we use it 
here in the general sense of the suitable or intended space 
of the mathemati cal and/or theoretical description of the 
system. In this sense the very abstract Hilbert space of 
complex probability densities is a phase space for the state 
function in Quantum Mechanics, very far form ordinary 
space–time.

Now, in biology, the situation is more difficult. Our 
claim here, along the lines of [27,10,37] is that, when con- 
sidering the biologically pertinent observables, organisms 
and phenotyp es, no conceptual nor mathemati cal con- 
struction of a pre-given phase space is possible for phylo- 
genetic trajector ies. This constitutes a major challenge in 
the study of biological phenomena . We will motivate it 
by different levels of analysis. Of course, our result is a
‘‘negative result’’, but negative results may open the way 
to new scientific thinking, in particular by the very tools 
proposed to obtain them, [43]. Our tools are based on the 
role of symmetries and criticality, which will suggest some 
possible ways out. 

2. Phase spaces and symmetries 

We understand the historically robust ‘‘structur e of 
determination of physics’’ (which includes unpredictab il- 
ity) by recalling that, since Noether and Weyl, physical 
laws may be described in terms of theoretical symmetries 
in the intended equations (of the ‘‘dynamics’’, in a general 
sense, see below). These symmetr ies in particular express 
the fundamenta l conservation laws of the physical observ- 
ables (energy, momentum, charges . . . ), both in classical 
and quantum physics. And the conservation propertie s al- 
low us to compute the trajector ies of physical objects as 
geodetics, by extremizi ng the pertinent functionals (Ham-
ilton principle applied to the Langrangian functiona ls). It is 
the case even in Quantum Mechanics, as they allow to de- 
rive the trajectory of the state function in a suitable math- 
ematical space, by Schrödinger equation. 

As we said, only with the invention of an (analytic)
geometry of space (Descartes), could trajectories be placed 
in a mathematicall y pre-given space, which later became 
the absolute space of Newtonian laws. The proposal of the 
more general notion of ‘‘phase space’’ dates of the late XIX 
century. Then momentum was added to spatial position 
as an integral component of the analysis of a trajectory, or 
energy to time, in order to apply the correspondi ng conser- 
vation propertie s, thus the corresponding theoretical sym- 
metries. In general, the phase spaces are the right spaces 
of description in the sense that they allow one to soundly 

2 The Italian Renaissance painting invented the mathematical ‘‘back- 
ground’’ space by the perspective, later turned into mathematics by 
Descartes and Desargues, see [42].

3 One is the position and the other takes into account the mass and the 
change of position. 
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