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a b s t r a c t

We investigate the solvability of a recent mathematical model describing plane deforma-
tions of an elastic solid whose boundary is partially reinforced by a thin elastic coating.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Problems dealing with plane deformations of elastic solids with reinforced or coated boundaries have been dealt with
extensively in the literature (see, for example [1–8] and the references contained therein). The main objectives of these
analyses is to understand the mechanics of coated surfaces as well as to attempt to simulate the mechanical response of
materials subjected to various industrial surface processing techniques such as shot-peening. In addition, since these
‘reinforced surfaces’ essentially incorporate the effects of surface stresses, this class of problems is also of great interest
to researchers working in the emerging area of nanomechanics in which the effects of surface stresses have been in-
cluded in continuum models in an attempt to understand the size-dependency of material properties at the nano-scale
(see, for example [9]). These examples provide compelling physical motivation for the formulation of a well-posed math-
ematical model predicting the mechanical response of materials which incorporate (in some form) the effects of surface
reinforcement.

The study of the solvability of a new mathematical model describing a linear theory of plane-strain elasticity with
boundary reinforcement was initiated by the authors in [7]. In that paper, the corresponding fundamental boundary value
problems are formulated (including a detailed derivation of the reinforcement (boundary) conditions) and solvability re-
sults are proved using the boundary integral equation method. This is a crucial step for, without it, there is no guarantee
that a solution of the mathematical model actually exists despite the fact that the physics clearly demonstrates such a
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solution. A priori knowledge of solvability is the basis of numerical solution and is crucial to the correct formulation of any
mathematical model. The results in [7], however, are limited to the case when the reinforced part of the boundary consists
of a finite number of sufficiently smooth closed curves. The more general case in which the reinforced boundary can be
represented by the union of a finite number of open curves is of considerable practical interest since it allows for the mod-
elling of a much wider class of physical problems involving elastic coatings or the effects of surface stress [3]. For example,
the case where a surface is partially reinforced or partially coated with a thin film occurs in many different industrial
applications (see, for example [5,6]). Unfortunately, this more general case is associated with an (already) nonstandard
boundary condition (characterizing the effect of the reinforcement), this time, posed over open arcs as opposed to closed
curves. The additional resulting end-point conditions to be satisfied at the ends of each arc preclude the extension of the
methods used in [7] as well as the subsequent establishment of critical results on the solvability of the corresponding
mathematical model.

In the present work, we draw on results established by the authors in [10], and formulate the corresponding mixed
boundary value problems with an alternative (lower order) form of the reinforcement boundary condition. This form is par-
ticularly attractive in that it automatically satisfies all end-point conditions and leads itself well to analysis by the boundary
integral equation method. In fact, using the formulation from [10], the boundary value problems are shown to reduce to sys-
tems of singular integral equations (as opposed to systems of singular integro-differential equations [7]) for which Noether’s
theorems reduce to Fredholm’s theorems. This important fact alone allows us to finally establish the required solvability re-
sults for this more general model.

2. Preliminaries

In what follows, Greek and Latin indices take the values 1, 2 and 1, 2, 3, respectively, we sum over repeated indices, Mm�n

is the space of ðm� nÞ-matrices, En is the identity element in Mn�n, a superscript T indicates matrix transposition and
ð� � �Þ;a � oð� � �Þ=oxa. Also, if X is a space of scalar functions and m a matrix, m 2 X means that every component of m belongs
to X. Let S be a multiply-connected domain in R2 whose boundary oS is described by the union of a finite number of suffi-
ciently smooth closed curves and assumed to be positively oriented in the sense of Green’s theorem for the plane. We regard
a subset C (consisting of the union of a finite number of sufficiently smooth open curves Li with end-points ai and bi

ði ¼ 1; . . . ;mÞ such that Lj and Lk have no point in common for j–k) of oS as being coated with a thin elastic film that deforms
as a material curve. We assume that S is occupied by a homogeneous and isotropic elastic material with Lamé constants k
and l. The state of plane-strain is characterized by a displacement field u ¼ ðu1;u2;u3ÞT of the form

ua ¼ uaðx1; x2Þ; u3 ¼ 0; ð1Þ

where x ¼ ðx1; x2Þ is a generic point in R2. In the absence of body forces (1) leads to the system of equilibrium equations:

LðoxÞuðxÞ ¼ 0 ð2Þ

in which, now, u ¼ ðu1;u2ÞT; LðoxÞ ¼ Lðo=ox1; o=ox2Þ is the matrix partial differential operator defined by

Lðn1; n2Þ ¼
lDþ ðkþ lÞn2

1 ðkþ lÞn1n2

ðkþ lÞn1n2 lDþ ðkþ lÞn2
2

 !

and D ¼ n2
1 þ n2

2. Together with L, we consider the boundary stress operator TðoxÞ ¼ Tðo=ox1; o=ox2Þ defined by

Tðn1; n2Þ ¼
ðkþ 2lÞn1n1 þ ln2n2 ln2n1 þ kn1n2

kn2n1 þ ln1n2 ln1n1 þ ðkþ 2lÞn2n2

� �
;

where n ¼ ðn1;n2ÞT is the unit outward normal to oS. With the assumption that

3kþ 2l > 0; l > 0; ð3Þ

it is clear that the operator L is elliptic and the internal energy density given by

Eðu;uÞ ¼ 1
2
½kðu1;1 þ u2;2Þ2 þ 2lðu2

1;1 þ u2
2;2Þ þ lðu1;2 þ u2;1Þ2�

is a positive quadratic form. Further, Eðu;uÞ ¼ 0 if and only if

uðxÞ ¼ ðc1 þ c0x2; c2 � c0x1ÞT; ð4Þ

where c0 and ca are arbitrary constants. Eq. (4) is the most general rigid displacement compatible with the theory of plane-
strain. If we write

F ¼
1 0 x2

0 1 �x1

� �
;

where the columns FðiÞ form a basis for (4), then any vector of the form (4) can be written as Fk where k 2M3�1 is constant
and arbitrary. Further, it is clear that LF ¼ 0 in R2 and that TF ¼ 0 on oS.
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