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a b s t r a c t

The Euler equations of a thickness-wise expansion of the potential energy of a thin body,
truncated at a specified order in thickness, furnish a model for the bending and stretching
of plates and shells. However, truncated expansions of the energy typically do not lead to
well-posed minimization problems. This is related to the fact that the truncations may fail
to satisfy the relevant Legendre–Hadamard condition, which is necessary for the existence
of minimizers. This lack of well-posedness is thus entirely consistent with well-posedness
in the exact theory. However, it is an inconvenience from the viewpoint of analysis. What is
desired is an accurate, well-posed truncation that preserves the structure of classical plate
theory. The present work is concerned with the development of such a model for a uniform
fiber-reinforced lamina.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Approximate theories for the bending and stretching of fiber-reinforced laminates are a cornerstone of structural analysis
and are well described in many texts and monographs, while Rogers et al [1], building on Michell’s [2] ideas, have made fun-
damental advances in the exact theory. However, to date virtually no work has been done on the rigorous derivation of
approximate models amenable to engineering calculations. An important exception is the recent work of Paroni [3], in which
a rigorous leading order (in thickness) model is obtained for a single lamina possessing reflection symmetry with respect to
its midplane. The proof relies on sophisticated concepts in functional analysis which may not be well known to those more
concerned with applications of plate theory. Indeed, the recent literature on modern developments in plate theory (e.g. [4])
may give the impression of a recondite subject. In contrast, we show here that straightforward reasoning yields not only the
correct model, but also a simpler framework in which it can be interpreted and extended. In particular, we recover Paroni’s
model, specialized to laminae with fiber symmetry, without resorting to functional analysis.

Standard notation is used throughout. Thus, we use bold face for vectors and tensors and indices to denote their compo-
nents. Latin indices take values in {1, 2, 3}; Greek in {1, 2}. The latter are associated with surface coordinates and associated
vector and tensor components. A dot between bold symbols is used to denote the standard inner product. Thus, if A1 and A2

are second-order tensors, then A1 � A2 ¼ trðA1At
2Þ, where trð�Þ is the trace and the superscript t is used to denote the transpose.

The norm of a tensor A is j A j¼
ffiffiffiffiffiffiffiffiffiffi
A � A
p

. The linear operator Symð�Þ delivers the symmetric part of its second-order tensor
argument. The notation � identifies the standard tensor product of vectors. If C is a fourth-order tensor, then C[A] is the sec-
ond-order tensor with orthogonal components CijklAkl. Finally, we use symbols such as Div and D to denote the three-dimen-
sional divergence and gradient operators, while div and r are reserved for their two-dimensional counterparts. Thus, for
example, DivA ¼ Aij;jei and divA ¼ Aia;aei, where feig is an orthonormal basis and subscripts preceded by commas are used
to denote partial derivatives with respect to Cartesian coordinates.
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The three-dimensional equation of equilibrium without body force is

Div eP ¼ 0; ð1Þ

where

eP ¼ Sþ eHSþ C½eH�: ð2Þ

is the linear approximation to the Piola stress, S is the (symmetric) residual stress, eH ¼ D~u is the displacement gradient, ~uðxÞ
is the three-dimensional displacement field and C is the fourth-order tensor of elastic moduli. We require the latter to pos-
sess the minor symmetries

A1 � C½A2� ¼ At
1 � C½A2�; A1 � C½A2� ¼ A1 � C½At

2� ð3Þ

and the major symmetry

A1 � C½A2� ¼ A2 � C½A1� ð4Þ

for all second-order tensors A1;A2. These restrictions in turn ensure that

eP ¼ UeH ; ð5Þ

where

UðeH; xÞ ¼ S � eH þ 1
2
ðeHS � eH þ eH � C½eH�Þ ð6Þ

is the quadratic-order approximation to the strain energy per unit volume of R in which explicit dependence on x 2 R is pres-
ent if the material is non-uniform. Such dependence occurs through the residual stress and the moduli. In this work we take
these to be independent of x and thus restrict attention to uniform materials.

This expression is consistent with that obtained by Hoger [5], who notes that the linear term may be discarded if the
residual stress is required to be self-equilibrating in the sense that DivS vanishes in the interior of the body and Sn vanishes
on a part of its boundary (with exterior unit normal n) where null residual stress is prescribed, the displacement being as-
signed on the complementary part. That this is so follows easily from S � eH ¼ DivðS~uÞ � ~u � DivS ¼ DivðS~uÞ. The volume inte-
gral of this term is expressible as the surface integral of ~u � Sn over the boundary; this vanishes where null residual tractions
are specified and performs null working on the remainder. Accordingly, the first term in (6) contributes only a disposable
constant to the energy of the body.

We impose the strong-ellipticity condition

ðw � SwÞv � v þ v �w � C½v �w� > 0 for all v �w–0: ð7Þ

This is necessary for the undeformed body to be a minimizer of the total strain energy. It is easy to show that the symmetric
part of v �w vanishes if and only if v �w vanishes, so that (7) is meaningful. We also assume this inequality to hold whether
or not residual stress is present. Thus we impose the condition

v �w � C½v �w� > 0 for all v �w–0; ð8Þ

which is stronger (resp. weaker) than (7) if the residual stress is positive (resp. negative) definite.
Following Spencer [6] we model the lamina as a transversely isotropic solid. The axes of transverse isotropy are coincident

with the direction fields of the (straight) fiber trajectories. The components of C relative to an orthonormal basis feig are (see
Spencer [7])

Cijkl ¼ kdijdkl þ lTðdikdjl þ dildjkÞ þ aðdijmkml þmimjdklÞ þ ðlL � lTÞðmimkdjl þmimldjk þmjmkdil þmjmldikÞ
þ bmimjmkml; ð9Þ

where dij is the Kronecker delta; a; b; k;lT and lL are material constants; and the unit vector m, with components mi, is
the fiber axis, assumed here to be uniform. Spencer [7] shows that lT is the shear modulus for shearing in planes trans-
verse to m, whereas lL is the shear modulus for shearing parallel to m. The remaining material constants in (9) may be
interpreted in terms of extensional moduli and Poisson ratios [7]. In this model the fibers are modelled as perfectly flex-
ible curves that transmit conventional stresses. In particular, couple stresses, generated by the flexural stiffness of the
fibers, are ignored. This is in accord with standard laminate theory. However, an extension of the three-dimensional the-
ory that accounts for fiber bending stiffness is available [8], and would no doubt lead to useful advances in the devel-
opment of plate theory.

The general form of the residual stress may be derived by enumerating the strain invariants for transverse isotropy
that are linear in the (infinitesimal) strain. These are [7] I �H and m�m �H. Comparison with the linear term in (6) then
furnishes

S ¼ STðI�m�mÞ þ SLm�m; ð10Þ

where ST is the constant residual stress in the isotropic plane and SL is the constant residual uniaxial stress along m.
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