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a b s t r a c t

The paper aims to explore the existence of diverse lump and interaction solutions to
linear partial differential equations in (3+1)-dimensions. The remarkable richness of exact
solutions to a class of linear partial differential equations in (3+1)-dimensions will be
exhibited through Maple symbolic computations, which yields exact lump, lump-periodic
and lump–soliton solutions. The results expand the understanding of lump, freakwave and
breather solutions and their interaction solutions in soliton theory.
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1. Introduction

Lump solutions are a particular kind of exact solutions, which describe various important nonlinear phenomena in
nature [1,2]. More specifically, such solutions can be generated from solitons by taking long wave limits [3]. There are also
positons and complexitons to integrable equations, enriching the diversity of solitons [4,5]. Interaction solutions between
two different kinds of exact solutions exhibit more diverse nonlinear phenomena [6].

Soliton solutions are exponentially localized in all directions in space and time, and lump solutions, rationally localized
in all directions in space. Through a Hirota bilinear form:

P(Dx,Dt )f · f = 0, (1.1)

where P is a polynomial and Dx and Dt are Hirota’s bilinear derivatives, an N-soliton solution in (1+1)-dimensions can be
defined by

f =

∑
µ=0,1

exp(
N∑
i=1

µiξi +
∑
i<j

µiµjaij), (1.2)
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where⎧⎨⎩ξi = kix − ωit + ξi,0, 1 ≤ i ≤ N,

eaij = −
P(ki − kj, ωj − ωi)
P(ki + kj, ωj + ωi)

, 1 ≤ i < j ≤ N,
(1.3)

with ki and ωi satisfying the dispersion relation and ξi,0 being arbitrary shifts. The KPI equation

(ut + 6uux + uxxx)x − uyy = 0 (1.4)

has a lump solution [7]:

u = 2(ln f )xx, f =
(
a1x + a2y + a3t + a4

)2
+

(
a5x + a6y + a7t + a8

)2
+ a9, (1.5)

where

a3 =
a1a22 − a1a62 + 2 a2a5a6

a12 + a52
, a7 =

2a1a2a6 − a22a5 + a5a62

a12 + a52
, a9 =

3(a12 + a52)3

(a1a6 − a2a5)2
, (1.6)

and the other parameters ai’s are arbitrary but need to satisfy a1a6 − a2a5 ̸= 0, which guarantees rational localization in all
directions in the (x, y)-plane. Other integrable equations, possessing lump solutions, include the three-dimensional three-
wave resonant interaction [8], the BKP equation [9,10], the Davey–Stewartson equation II [3], the Ishimori-I equation [11]
and many others [12,13].

It is recognized by making symbolic computations that many nonintegrable equations possess lump solutions as well,
including (2+1)-dimensional generalized KP, BKP and Sawada–Kotera equations [14–16]. Moreover, various studies show
the existence of interaction solutions between lumps and another kind of exact solutions to nonlinear integrable equation in
(2+1)-dimensions, which contain lump–soliton interaction solutions (see, e.g., [17–20]) and lump–kink interaction solutions
(see, e.g., [21–24]). Nevertheless, in the (3+1)-dimensional case, only lump-type solutions are presented for the integrable
Jimbo–Miwa equations, which are rationally localized in almost all but not all directions in space. All presented analytical
rational solutions to the (3+1)-dimensional Jimbo–Miwa equation in [25–27] and the (3+1)-dimensional Jimbo–Miwa like
equation in [28] are not rationally localized in all directions in space. It is absolutely very interesting and important to explore
lump and interaction solutions to partial differential equations in (3+1)-dimensions.

This paper aims at showing that there do exist abundant lump solutions and their interaction solutions to linear partial
differential equations in (3+1)-dimensions. A class of particular examples in (3+1)-dimensions will be considered to exhibit
such solution phenomena. We will explicitly generate lump solutions and mixed lump-periodic and lump–soliton solutions
for a specially chosen class of (3+1)-dimensional linear partial differential equations. Based onMaple symbolic computations,
sufficient conditions and examples of lump and interaction solutionswill be provided, togetherwith three-dimensional plots
and contour plots of special examples of the presented solutions. Some concluding remarks will be given in the final section.

2. Abundant lump and interaction solutions

Let u = u(x, y, z, t) be a real function of x, y, z, t ∈ R. We consider a class of linear partial differential equations (PDEs)
in (3+1)-dimensions:

α1uxy + α2uxz + α3uxt + α4uyz + α5uyt + α6uzt + α7uxx + α8uyy + α9uzz + α10utt = 0, (2.1)

where αi, 1 ≤ i ≤ 10, are real constants, and the subscripts denote partial differentiation.
We search for a kind of exact solutions

u = v(ξ1, ξ2, ξ3, ξ4) (2.2)

where v is an arbitrary real function, and ξi, 1 ≤ i ≤ 4, are four wave variables:

ξi = aix + biy + ciz + dit + ei, 1 ≤ i ≤ 4, (2.3)

in which ai, bi, ci, di and ei, 1 ≤ i ≤ 4, are real constants to be determined. Then, the linear PDE (2.1) becomes
4∑

i=1

4∑
j=i

wijvξiξj = 0, (2.4)

where wij, 1 ≤ i ≤ j ≤ 4, are quadratic functions of the parameters ai, bi, ci and di, 1 ≤ i ≤ 4. Upon setting all coefficients
of the ten second partial derivatives of v to be zero, we obtain a system of equations on the parameters:⎧⎪⎨⎪⎩

α1aibi + α2aici + α3aidi + α4bici + α5bidi
+ α6cidi + α7a2i + α8b2i + α9c2i + α10d2i = 0, 1 ≤ i ≤ 4,

α1(aibj + ajbi) + α2(aicj + ajci) + α3(aidj + ajdi) + α4(bicj + bjci) + α5(bidj + bjdi)
+ α6(cidj + cjdi) + 2α7aiaj + 2α8bibj + 2α9cicj + 2α10didj = 0, 1 ≤ i < j ≤ 4.

(2.5)
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