Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs

Wen-Xiu Ma*
Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA
College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa

ARTICLE INFO

Article history:

Received 23 February 2018
Accepted 5 July 2018

MSC:

35Q51
35Q53
37K40

Keywords:

Symbolic computation
Lump solution
Interaction solution

Abstract

The paper aims to explore the existence of diverse lump and interaction solutions to linear partial differential equations in (3+1)-dimensions. The remarkable richness of exact solutions to a class of linear partial differential equations in (3+1)-dimensions will be exhibited through Maple symbolic computations, which yields exact lump, lump-periodic and lump-soliton solutions. The results expand the understanding of lump, freak wave and breather solutions and their interaction solutions in soliton theory.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Lump solutions are a particular kind of exact solutions, which describe various important nonlinear phenomena in nature [1,2]. More specifically, such solutions can be generated from solitons by taking long wave limits [3]. There are also positons and complexitons to integrable equations, enriching the diversity of solitons [4,5]. Interaction solutions between two different kinds of exact solutions exhibit more diverse nonlinear phenomena [6].

Soliton solutions are exponentially localized in all directions in space and time, and lump solutions, rationally localized in all directions in space. Through a Hirota bilinear form:

$$
\begin{equation*}
P\left(D_{x}, D_{t}\right) f \cdot f=0 \tag{1.1}
\end{equation*}
$$

where P is a polynomial and D_{x} and D_{t} are Hirota's bilinear derivatives, an N-soliton solution in (1+1)-dimensions can be defined by

$$
\begin{equation*}
f=\sum_{\mu=0,1} \exp \left(\sum_{i=1}^{N} \mu_{i} \xi_{i}+\sum_{i<j} \mu_{i} \mu_{j} a_{i j}\right) \tag{1.2}
\end{equation*}
$$

[^0]where
\[

\left\{$$
\begin{array}{l}
\xi_{i}=k_{i} x-\omega_{i} t+\xi_{i, 0}, 1 \leq i \leq N \tag{1.3}\\
\mathrm{e}^{a_{i j}}=-\frac{P\left(k_{i}-k_{j}, \omega_{j}-\omega_{i}\right)}{P\left(k_{i}+k_{j}, \omega_{j}+\omega_{i}\right)}, 1 \leq i<j \leq N
\end{array}
$$\right.
\]

with k_{i} and ω_{i} satisfying the dispersion relation and $\xi_{i, 0}$ being arbitrary shifts. The KPI equation

$$
\begin{equation*}
\left(u_{t}+6 u u_{x}+u_{x x x}\right)_{x}-u_{y y}=0 \tag{1.4}
\end{equation*}
$$

has a lump solution [7]:

$$
\begin{equation*}
u=2(\ln f)_{x x}, f=\left(a_{1} x+a_{2} y+a_{3} t+a_{4}\right)^{2}+\left(a_{5} x+a_{6} y+a_{7} t+a_{8}\right)^{2}+a_{9} \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{3}=\frac{a_{1} a_{2}^{2}-a_{1} a_{6}^{2}+2 a_{2} a_{5} a_{6}}{a_{1}^{2}+a_{5}^{2}}, a_{7}=\frac{2 a_{1} a_{2} a_{6}-a_{2}^{2} a_{5}+a_{5} a_{6}^{2}}{a_{1}^{2}+a_{5}^{2}}, a_{9}=\frac{3\left(a_{1}^{2}+a_{5}^{2}\right)^{3}}{\left(a_{1} a_{6}-a_{2} a_{5}\right)^{2}}, \tag{1.6}
\end{equation*}
$$

and the other parameters a_{i} 's are arbitrary but need to satisfy $a_{1} a_{6}-a_{2} a_{5} \neq 0$, which guarantees rational localization in all directions in the (x, y)-plane. Other integrable equations, possessing lump solutions, include the three-dimensional threewave resonant interaction [8], the BKP equation [9,10], the Davey-Stewartson equation II [3], the Ishimori-I equation [11] and many others $[12,13]$.

It is recognized by making symbolic computations that many nonintegrable equations possess lump solutions as well, including ($2+1$)-dimensional generalized KP, BKP and Sawada-Kotera equations [14-16]. Moreover, various studies show the existence of interaction solutions between lumps and another kind of exact solutions to nonlinear integrable equation in (2+1)-dimensions, which contain lump-soliton interaction solutions (see, e.g., [17-20]) and lump-kink interaction solutions (see, e.g., [21-24]). Nevertheless, in the (3+1)-dimensional case, only lump-type solutions are presented for the integrable Jimbo-Miwa equations, which are rationally localized in almost all but not all directions in space. All presented analytical rational solutions to the (3+1)-dimensional Jimbo-Miwa equation in [25-27] and the (3+1)-dimensional Jimbo-Miwa like equation in [28] are not rationally localized in all directions in space. It is absolutely very interesting and important to explore lump and interaction solutions to partial differential equations in (3+1)-dimensions.

This paper aims at showing that there do exist abundant lump solutions and their interaction solutions to linear partial differential equations in (3+1)-dimensions. A class of particular examples in (3+1)-dimensions will be considered to exhibit such solution phenomena. We will explicitly generate lump solutions and mixed lump-periodic and lump-soliton solutions for a specially chosen class of (3+1)-dimensional linear partial differential equations. Based on Maple symbolic computations, sufficient conditions and examples of lump and interaction solutions will be provided, together with three-dimensional plots and contour plots of special examples of the presented solutions. Some concluding remarks will be given in the final section.

2. Abundant lump and interaction solutions

Let $u=u(x, y, z, t)$ be a real function of $x, y, z, t \in \mathbb{R}$. We consider a class of linear partial differential equations (PDEs) in (3+1)-dimensions:

$$
\begin{equation*}
\alpha_{1} u_{x y}+\alpha_{2} u_{x z}+\alpha_{3} u_{x t}+\alpha_{4} u_{y z}+\alpha_{5} u_{y t}+\alpha_{6} u_{z t}+\alpha_{7} u_{x x}+\alpha_{8} u_{y y}+\alpha_{9} u_{z z}+\alpha_{10} u_{t t}=0, \tag{2.1}
\end{equation*}
$$

where $\alpha_{i}, 1 \leq i \leq 10$, are real constants, and the subscripts denote partial differentiation.
We search for a kind of exact solutions

$$
\begin{equation*}
u=v\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \tag{2.2}
\end{equation*}
$$

where v is an arbitrary real function, and $\xi_{i}, 1 \leq i \leq 4$, are four wave variables:

$$
\begin{equation*}
\xi_{i}=a_{i} x+b_{i} y+c_{i} z+d_{i} t+e_{i}, \quad 1 \leq i \leq 4 \tag{2.3}
\end{equation*}
$$

in which $a_{i}, b_{i}, c_{i}, d_{i}$ and $e_{i}, 1 \leq i \leq 4$, are real constants to be determined. Then, the linear PDE (2.1) becomes

$$
\begin{equation*}
\sum_{i=1}^{4} \sum_{j=i}^{4} w_{i j} v_{\xi_{i} \xi_{j}}=0 \tag{2.4}
\end{equation*}
$$

where $w_{i j}, 1 \leq i \leq j \leq 4$, are quadratic functions of the parameters a_{i}, b_{i}, c_{i} and $d_{i}, 1 \leq i \leq 4$. Upon setting all coefficients of the ten second partial derivatives of v to be zero, we obtain a system of equations on the parameters:

$$
\left\{\begin{array}{l}
\alpha_{1} a_{i} b_{i}+\alpha_{2} a_{i} c_{i}+\alpha_{3} a_{i} d_{i}+\alpha_{4} b_{i} c_{i}+\alpha_{5} b_{i} d_{i} \tag{2.5}\\
\quad+\alpha_{6} c_{i} d_{i}+\alpha_{7} a_{i}^{2}+\alpha_{8} b_{i}^{2}+\alpha_{9} c_{i}^{2}+\alpha_{10} d_{i}^{2}=0,1 \leq i \leq 4, \\
\alpha_{1}\left(a_{i} b_{j}+a_{j} b_{i}\right)+\alpha_{2}\left(a_{i} c_{j}+a_{j} c_{i}\right)+\alpha_{3}\left(a_{i} d_{j}+a_{j} d_{i}\right)+\alpha_{4}\left(b_{i} c_{j}+b_{j} c_{i}\right)+\alpha_{5}\left(b_{i} d_{j}+b_{j} d_{i}\right) \\
\quad+\alpha_{6}\left(c_{i} d_{j}+c_{j} d_{i}\right)+2 \alpha_{7} a_{i} a_{j}+2 \alpha_{8} b_{i} b_{j}+2 \alpha_{9} c_{i} c_{j}+2 \alpha_{10} d_{i} d_{j}=0,1 \leq i<j \leq 4 .
\end{array}\right.
$$

https://daneshyari.com/en/article/8255301

Download Persian Version:

https://daneshyari.com/article/8255301

Daneshyari.com

[^0]: * Correspondence to: Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA.

 E-mail address: mawx@cas.usf.edu.

