Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/geomphys

Causality and Legendrian linking for higher dimensional spacetimes

Vladimir Chernov

Department of Mathematics, 6188 Kemeny Hall, Dartmouth College, Hanover, NH 03755, USA

ARTICLE INFO

Article history: Received 9 June 2018 Accepted 20 June 2018

Keywords: Globally hyperbolic spacetime Light ray Contact structure Legendrian linking Causality Legendrian Low conjecture

ABSTRACT

Let (X^{m+1}, g) be an (m+1)-dimensional globally hyperbolic spacetime with Cauchy surface M^m , and let \widetilde{M}^m be the universal cover of the Cauchy surface. Let \mathcal{N}_X be the contact manifold of all future directed unparameterized light rays in X that we identify with the spherical cotangent bundle ST^*M . Jointly with Stefan Nemirovski we showed that when \widetilde{M}^m is **not** a compact manifold, then two points $x, y \in X$ are causally related if and only if the Legendrian spheres \mathfrak{S}_x , \mathfrak{S}_y of all light rays through x and y are linked in \mathcal{N}_X .

In this short note we use the contact Bott–Samelson theorem of Frauenfelder, Labrousse and Schlenk to show that the same statement is true for all X for which the integral cohomology ring of a closed \tilde{M} is **not** the one of the CROSS (compact rank one symmetric space).

If *M* admits a Riemann metric \overline{g} , a point *x* and a number $\ell > 0$ such that all unit speed geodesics starting from *x* return back to *x* in time ℓ , then (M, \overline{g}) is called a Y_{ℓ}^x manifold. Jointly with Stefan Nemirovski we observed that causality in $(M \times \mathbb{R}, \overline{g} \oplus -t^2)$ is **not** equivalent to Legendrian linking. Every Y_{ℓ}^x -Riemann manifold has compact universal cover and its integral cohomology ring is the one of a CROSS. So we conjecture that Legendrian linking is equivalent to causality if and only if one can **not** put a Y_{ℓ}^x Riemann metric on a Cauchy surface *M*.

© 2018 Elsevier B.V. All rights reserved.

All manifolds, maps etc. are assumed to be smooth unless the opposite is explicitly stated, and the word *smooth* means C^{∞} .

1. Introduction

Let *M* be a not necessarily orientable, connected manifold of dimension $m \ge 2$ and let $\pi_M : ST^*M \to M$ be its spherical cotangent bundle. The manifold ST^*M carries a canonical co-oriented contact structure. An isotopy $\{L_t\}_{t \in [0,1]}$ of Legendrian submanifolds in a co-oriented contact manifold is called respectively *positive*, *non-negative* if it can be parameterized in such a way that the tangent vectors of all the trajectories of individual points lie in respectively positive, non-negative tangent half-spaces defined by the contact structure.

For the introduction of basic notions from Lorentz geometry we follow our paper [1].

Let (X^{m+1}, g) be an (m + 1)-dimensional Lorentz manifold and $x \in X$. A nonzero $\mathbf{v} \in T_x X$ is called *timelike, spacelike, non-spacelike (causal) or null (lightlike)* if $g(\mathbf{v}, \mathbf{v})$ is respectively negative, positive, non-positive or zero. An piecewise smooth curve is timelike if all of its velocity vectors are timelike. Null and non-spacelike curves are defined similarly. The Lorentz

E-mail address: Vladimir.Chernov@dartmouth.edu.

manifold (X, g) has a unique Levi-Civita connection, see for example [2, page 22], so we can talk about timelike and null geodesics. A submanifold $M \subset X$ is *spacelike* if g restricted to *TM* is a Riemann metric.

All non-spacelike vectors in $T_x X$ form a cone consisting of two hemicones, and a continuous with respect to $x \in X$ choice of one of the two hemicones (if it exists) is called the *time orientation* of (X, g). The vectors from the chosen hemicones are called *future directed*. A time oriented Lorentz manifold is called a *spacetime* and its points are called *events*.

For x in a spacetime (X, g) its *causal future* $J^+(x) \subset X$ is the set of all $y \in X$ that can be reached by a future pointing causal curve from x. The causal past $J^-(x)$ of the event $x \in X$ is defined similarly.

Two events x, y are said to be *causally related* if $x \in J^+(y)$ or $y \in J^+(x)$.

A spacetime is said to be *globally hyperbolic* if $J^+(x) \cap J^-(y)$ is compact for every $x, y \in X$ and if it is *causal*, i.e. it has no closed non-spacelike curves. The classical definition of global hyperbolicity requires (X, g) to be strongly causal rather than just causal, but these two definitions are equivalent, see Bernal and Sanchez [3, Theorem 3.2].

A *Cauchy surface* in (X, g) is a subset such that every inextendible nonspacelike curve $\gamma(t)$ intersects it at exactly one value of t. A classical result is that (X, g) is globally hyperbolic if and only if it has a Cauchy surface, see [4, pages 211–212]. Geroch [5] proved that every globally hyperbolic (X, g) is homeomorphic to a product of \mathbb{R} and a Cauchy surface. Bernal and Sanchez [6, Theorem 1], [7, Theorem 1.1], [8, Theorem 1.2] proved that every globally hyperbolic (X^{m+1}, g) has a smooth spacelike Cauchy surface M^m and that moreover for every smooth spacelike Cauchy surface M there is a diffeomorphism $h: M \times \mathbb{R} \to X$ such that

a: $h(M \times t)$ is a smooth spacelike Cauchy surface for all *t*,

- **b**: $h(x \times \mathbb{R})$ is a future directed timelike curve for all $x \in M$, and finally
- **c**: $h(M \times 0) = M$ with $h|_{M \times 0} : M \to M$ being the identity map.

For a spacetime X we consider its space of light rays $\mathfrak{N} = \mathfrak{N}_X$. By definition, a point $\gamma \in \mathfrak{N}$ is an equivalence class of inextendible future-directed null geodesics up to an orientation preserving affine reparametrization.

A seminal observation of Penrose and Low [9-11] is that the space \mathfrak{N} has a canonical structure of a contact manifold (see also [12-15]). A contact form α_M on \mathfrak{N} defining that contact structure can be associated to any smooth spacelike Cauchy surface $M \subset X$. Namely, consider the map

$$\iota_M:\mathfrak{N}_X \hookrightarrow T^*M$$

taking $\gamma \in \mathfrak{N}$ represented by a null geodesic $\gamma \subset X$ to the 1-form on M at the point $x = \gamma \cap M$ collinear to $\langle \dot{\gamma}(x), \cdot \rangle|_M$ and having unit length with respect to the induced Riemann metric on M. This map identifies \mathfrak{N} with the unit cosphere bundle ST^*M of the Riemannian manifold M. Then

$$\alpha_M := \iota_M^* \lambda_{can},$$

where $\lambda_{can} = \sum p_k dq^k$ is the canonical Liouville 1-form on T^*M .

Remark 1.1 (*Bott–Samelson Type Result of Frauenfelder, Labrousse and Schlenk and its Strengthening*). The contact Bott–Samelson [16] type result of Frauenfelder, Labrousse and Schlenk [17, Theorem 1.13] says that if there is a positive Legendrian isotopy of a fiber S_x of ST^*M to itself, then the universal cover \widetilde{M} of M is compact and has the integral cohomology ring of a CROSS. (This result answers our question with Nemirovski [18, Example 8.3] and compactness of \widetilde{M} was first proved in [18, Corollary 8.1].)

Our result with Nemirovski [19, Proposition 4.5] says that if there is a non-constant non-negative Legendrian isotopy of S_x to itself, then there is a positive Legendrian isotopy of S_x to itself. (Note that this positive Legendrian isotopy generally is not a perturbation of the non-negative non-constant Legendrian isotopy that was assumed.)

So we can somewhat strengthen [17, Theorem 1.13] to say that if there is a non-constant non-negative Legendrian isotopy of S_x to itself, then the universal cover \widetilde{M} of M is compact and has the integral cohomology ring of a CROSS, and in this work we will have to use the strengthened version of the contact Bott–Samelson type theorem.

2. Main results

Let (X, g) be a globally hyperbolic spacetime with Cauchy surface M. For a point $x \in X$ we denote by $\mathfrak{S}_x \subset \mathfrak{N}$ the Legendrian sphere of all (unparameterized, future directed) light rays passing through x.

For two causally unrelated points $x, y \in X$ the Legendrian link $(\mathfrak{S}_x, \mathfrak{S}_y)$ in \mathcal{N} does not depend on the choice of the causally unrelated points. Under the identification $\mathcal{N} = ST^*M$ this link is Legendrian isotopic to the link of sphere-fibers over two points of some (and then any) spacelike Cauchy surface M, see [20, Theorem 8], [1, Lemma 4.3] and [12]. We call a Legendrian link *trivial* if it is isotopic to such a link.

In [1, Theorem A] and [18, Theorem 10.4] we proved the following result. Assume that the universal cover \widetilde{M} of a Cauchy surface of M of X is not compact and events $x, y \in X$ are causally related. Then the Legendrian link ($\mathfrak{S}_x, \mathfrak{S}_y$) is nontrivial.

In the case where $M = \mathbb{R}^3$ this proved the Legendrian Low conjecture of Natario and Tod [12]. The question to explore relations between causality and linking was motivated by the observations of Low [10,11] and appeared on Arnold's problem lists as a problem communicated by Penrose [21, Problem 8], [22, Problem 1998-21].

In this work we prove the following theorem.

Download English Version:

https://daneshyari.com/en/article/8255305

Download Persian Version:

https://daneshyari.com/article/8255305

Daneshyari.com