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a b s t r a c t

Consideration of surface (interface) energy effects on the elastic field of a solid material has
applications in several modern problems in solid mechanics. The Gurtin–Murdoch contin-
uum model [M.E. Gurtin, A.I. Murdoch, Arch. Ration. Mech. Anal. 57 (1975) 291–323; M.E.
Gurtin, J. Weissmuller, F. Larché, Philos. Mag. A 78 (1998) 1093–1109] accounting for sur-
face energy effects is applied to analyze the elastic field of an isotropic elastic layer bonded
to a rigid base. The surface properties are characterized by the residual surface tension and
surface Lame constants. The general solutions of the bulk medium expressed in terms of
Fourier integral transforms and Hankel integral transforms are used to formulate the
two-dimensional and axisymmetric three-dimensional problems, respectively. The gener-
alized Young–Laplace equation for a surface yields a set of non-classical boundary condi-
tions for the current class of problems. An explicit analytical solution is presented for
the elastic field of a layer. The layer solution is specialized to obtain closed-form solutions
for semi-infinite domains. Selected numerical results are presented to show the influence
of surface elastic constants and layer thickness on stresses and displacements.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

There is growing interest in the study of the mechanics of nano-scale structures and devices. The natural approach is to
consider atomistic modeling techniques for nano-scale domains but such techniques require a very large computational ef-
fort. The application of continuum-based approaches is considered attractive due to their lesser complexity and computa-
tional efficiency. The surface-to-volume ratio of a nano-scale domain is relatively high compared to that of macro-scale
domains. The energy associated with atoms at or near a free surface is different from that of atoms in the bulk. The effect
of surface free energy therefore becomes important in the case of nano-scale problems [1]. Povstenko [2] observed that
the stress field caused by heterogeneous surface tension in a solid half-space can be used to explain the high stresses in
the surface layer that cause a zone with high dislocation density when a surface-active melt interacts with a metal. In addi-
tion, for some soft solids, such as polymer gels, the surface energy (hence surface stresses) has an important influence on
surface topographical patterns that are used for applications in surface self-assembly regulation, micro-fluidic flow control
and direction, etc. [3,4]. Consequently, the study of the elastic field of a solid with surface energy effects is of interest to many
current technological developments.

Surface energy effects are generally ignored in traditional continuum mechanics. This is not the case for nano-scale struc-
tures due to their high surface/volume ratio, soft materials where the ratio of surface energy per unit area to the bulk Young’s
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modulus is comparable to the characteristic size of the material element and other situations where surface tension
gradients and other surface energy driven effects have a significant influence on the response. Gurtin and Murdoch [5,6]
developed a theoretical framework based on continuum mechanics concepts that included the effects of surface and inter-
facial energy, in which the surface is modeled as a mathematical layer of zero thickness perfectly bonded to an underlying
bulk. The surface (interface) has its own properties and processes that are different from the bulk. Miller and Shenoy [7] and
Shenoy [8] demonstrated that size-dependent behaviour of nano-scale structural elements can be modeled by applying the
Gurtin–Murdoch continuum model with surface properties determined from atomistic modeling [9]. Tian and Rajapakse [10]
examined the size-dependent elastic field due to a nano-scale elliptical defect in an isotropic matrix and observed unstable
defect geometries.

The elastic field of a surface-loaded layer of nano-scale thickness bonded to a rigid base has important applications in the
study of nano-electronics devices, coatings and films, deformations due to quantum dots, etc. Similarly, the response of a soft
elastic layer with surface energy effects can be used in the study of adsorption of molecules/cells into thin layers and their
interaction energies, micro-fluidic devices, etc. The classical elasticity solution of a layer of finite thickness bonded to a rigid
base was given by Pickett [11] which has found extensive applications in tribology, geomechanics, biomechanics, etc. Pov-
stenko [2] derived the elastic field of a half-space cased by a jump in the surface tension over a circular area by neglecting the
bulk properties He and Lim [12] derived the surface Green’s functions of a soft incompressible isotropic elastic half-space with
surface energy effects by using the Gurtin–Murdoch model. In addition to the incompressibility, they further restricted their
derivation to the special case where the surface elastic properties are same as the bulk properties. Wang and Feng [13] stud-
ied the response of a half-plane subjected to surface pressures by neglecting the surface elastic constants and considering
only the influence of constant surface tension. Huang and Yu [14] considered a surface-loaded half-plane with non-zero sur-
face elastic constants in the absence of any surface tension.

In this paper, the fundamental problem of a compressible isotropic elastic layer with complete surface stress effects (non-
zero surface tension and surface elastic properties) that is bonded to a rigid base and subjected to surface loading is consid-
ered. Both two-dimensional plane and axisymmetric problems are considered. The Gurtin–Murdoch model is applied to de-
rive the elastic field of the layer. Fourier and Hankel integral transforms are used to solve the boundary-value problems
involving non-classical boundary conditions associated with the generalized Young–Laplace equation. Closed-form analyt-
ical solutions are presented for the case of a layer of infinite thickness (half-plane/space) and in this case the influence of
surface energy effects can be explicitly identified. For a layer of finite thickness, the elastic field is examined numerically
to assess the influence of surface energy effects and layer thickness.

2. Governing equations and general solutions

Consider an elastic layer of finite thickness bonded to a rigid base as shown in Fig. 1. The layer is subjected to surface
loading and its response is modeled by using the Gurtin–Murdoch continuum model [5,6]. According to this model, the
surface energy effects are accounted for by considering the surface as a mathematical layer of zero thickness with rel-
evant elastic properties and residual surface tension, that is perfectly bonded to the underlying bulk material. In the
bulk, the governing equations are same as those in the classical elasticity. In addition, on a surface (or interface), the
generalized Young–Laplace equation [2] and a set of constitutive relations have to be satisfied. The basic equations
for small displacements and infinitesimal strains of a continuum with surface stress effects are summarized below based
on Gurtin et al. [6].

In the absence of body forces, the three-dimensional equilibrium and constitutive equations of the bulk material are,

rij;j ¼ 0 ð1Þ
rij ¼ 2leij þ kdijekk ð2Þ

and the classical strain–displacement relationship is,

Fig. 1. Elastic layer subjected to surface loading.
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