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a b s t r a c t

In this paper, we study a circle action on a compact oriented manifold with a discrete fixed
point set. The fixed point data consists of the weights at the fixed points. We prove various
results and properties of the action, in terms of the fixed point data. We show that the
manifold can be described by a multigraph associated to it.

Specializing into the case of dimension 4, we classify the fixed point data. Moreover,
we prove that there exist circle actions on oriented manifolds with these fixed point data.
Finally, we show that a certain multigraph behaves like a manifold.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study circle actions on oriented manifolds with discrete fixed point sets. Let the circle act on a compact
orientedmanifoldM with a discrete fixed point set. At each fixed point, there are non-zero integers, calledweights (also called
rotation numbers). In this paper, we prove properties of the weights at the fixed points and derive results on the manifold.
One of which we show is that we can associate a multigraph to M and the manifold can be described by the multigraph.
Finally, we specialize into the case of dimension 4. In dimension 4, we classify the weights at the fixed points and prove
the existence part. Moreover, we give a necessary and sufficient condition for a multigraph to be realized as a multigraph
associated to a 4-dimensional oriented S1-manifold.

Consider a circle action on a compact oriented manifold. Assume that the fixed point set is non-empty and finite. For the
classification of such an action, one may want to begin either with small numbers of fixed points, or with low dimensions.
Note that having an isolated fixed point implies that the dimension of the manifold is even.

First, let us begin with small numbers of fixed points. If there is one fixed point, then themanifoldmust be a point. On the
other hand, if there are two fixed points, then any even dimension is possible, as there is an example of a rotation of an even
dimensional sphere with two fixed points. From the example, on any even dimension greater than two, we can have any
even number of fixed points, since we can perform equivariant sum of rotations of even dimensional spheres. This makes
a big difference with S1-actions on other types of manifolds; for instance, an almost complex (and complex or symplectic)
manifold M equipped with an S1-action1 having two fixed points must have either dimM = 2 or dimM = 6; for the
classification results for other types of manifolds, see [1–3].

The situation is quite different when the number of fixed points is odd. If there is an odd number of fixed points, then the
dimension of the manifold must be a multiple of four; see Corollary 2.7. Let us specialize into the case of three fixed points.
Then the complex, quaternionic, and octonionic (Cayley) projective spaces (CP2, HP2, and OP2) of dimension 2 admit circle
actions with three fixed points, which have real dimensions 4, 8, and 16, respectively. On the other hand, to the author’s
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knowledge, it is not known if in dimensions other than 4, 8, and 16, there exists a manifold with three fixed points. Similar
to the case of two fixed points, if we assume an almost complex structure on a manifold, three fixed points can only happen
in dimension 4 [1]. Note that among the spaces above, only CP2 admits an almost complex structure (and hence complex or
symplectic structures). For the classification results for other types of manifolds, see [4].

Second, let us begin with low dimensions. In dimension two, the classification is rather trivial. Among compact oriented
surfaces, only the 2-sphere S2 and the 2-torus T2 admit non-trivial circle actions. Any circle action on S2 has two fixed points
and any circle action on T2 is fixed point free; see Lemma 2.12.

We discuss classification results in dimension four. Before we discuss our main result, let us discuss results for other
types ofmanifolds, or related results. The classification of a holomorphic vector field on a complex surface ismade by Carrell,
Howard, and Kosniowski [5]. For a 4-dimensional Hamiltonian S1-space, subsequent to the work by Ahara and Hattori [6]
and Audin [7], Karshon classifies such a space up to equivariant symplectomorphism, in terms of a multigraph associated
to M [8]. Note that in Section 4, we shall associate a multigraph to an oriented manifold M and our notion of multigraphs
generalizes the multigraphs for 4-dimensional Hamiltonian S1-spaces. A multigraph determines the weights at fixed points.
In dimension 4, for a complex manifold or for a symplectic manifold, the weights at the fixed points determine the manifold
uniquely. When the fixed point set are discrete, our main result generalizes the classification of weights at fixed points for
complex manifolds and symplectic manifolds to oriented manifolds. However, for a manifold to be oriented is a very weak
condition, and therefore uniqueness fails to hold for orientedmanifolds, sincewe can perform equivariant sum of amanifold
with another manifold that is fixed point free.

Somewhat related results are the classifications of a circle action on a 4-manifold, with different perspectives. For
instance, a circle action on a homotopy 4-sphere [9–12] or on a simply connected 4-manifold [13,14] is considered. In
addition, Fintushel classifies a 4-dimensional oriented S1-manifold in terms of orbit data [15].

Third, there is another point of view that one considers for a circle action on an oriented manifold with a discrete fixed
point set. One of them is the Petrie’s conjecture, which asserts that if a homotopy CPn admits a non-trivial S1-action, then
its total Pontryagin class is the same as that of CPn [16]. In other words, the existence of a non-trivial S1-action is enough to
determine the characteristic class of such a manifold. The Petrie’s conjecture is proved to hold in dimension up to 8 [17,18].

To state our classification result, we introduce a terminology. Let the circle act on a 2n-dimensional compact oriented
manifold M with a discrete fixed point set. Let p be a fixed point. Then the tangent space at p decomposes into n two-
dimensional irreducible S1-equivariant real vector spaces

TpM =

n⨁
i=1

Li.

Each Li is isomorphic to a one-dimensional S1-equivariant complex space on which the action is given as multiplication
by gwi

p , where g ∈ S1 and wi
p is a non-zero integer. The wi

p are called weights at p. Though the sign of each weight is not
well-defined, the sign of the product of the weights at p is well-defined. We orient each Li so that every weight is positive.
Let ϵ(p) = +1 if the orientation given on

⨁n
i=1Li this way agrees on the orientation on TpM and ϵ(p) = −1 otherwise. Let us

call it the sign of p. Denote the fixed point data at p by Σp = {ϵ(p), w1
p, . . . , w

n
p}. By the fixed point data ΣM of M , we mean

a collection ∪p∈MS1 Σp of the fixed point data at each fixed point p. To avoid possible confusion with weights, when we write
the sign at p inside Σp, we shall only write the sign of ϵ(p) and omit 1.

We give an example. Let the circle act on S2n by

g · (z1, . . . , zn, x) = (ga1z1, . . . , ganzn, x),

for any g ∈ S1 ⊂ C, where zi are complex numbers and x is a real number such that
∑n

i=1|zi|
2

+ x2 = 1, and ai are
positive integers for 1 ≤ i ≤ n. The action has two fixed points, p = (0, . . . , 0, 1) and q = (0, . . . , 0, −1). Near p, the
action is described as g · (z1, . . . , zn) = (ga1z1, . . . , ganzn). Therefore, the weights at p are {a1, . . . , an}. Similarly, the weights
at q are {a1, . . . , an}. It is not hard to see that ϵ(p) = −ϵ(q). The fixed point data of the circle action on S2n is therefore
{+, a1, . . . , an} ∪ {−, a1, . . . , an}.

With the notion of weights, consider a circle action on a 4-dimensional compact oriented manifold M and assume that
the fixed point set is discrete. As we have seen, the classification of the fixed point data for oriented manifolds is in general
harder than complex manifolds or symplectic manifolds. To the author’s knowledge, the fixed point data of an S1-action on
an oriented 4-manifold is known only if the number of fixed points is atmost three; see [19] for the case of three fixed points.
In this paper, we completely determine the fixed point data ofM with an arbitrary number of fixed points. Note that given a
circle action on amanifold, we can alwaysmake the action effective by quotienting out by the subgroupZk that acts trivially.
This amounts to dividing all the weights by k. We prove that for a circle action on a 4-dimensional oriented manifold with
a discrete fixed point set, the fixed point data of the manifold can be achieved by simple combinatorics. A combinatorial
format of the main result can be stated as follows.

Theorem 1.1. Let the circle act effectively on a 4-dimensional compact oriented manifold M with a discrete fixed point set. Then
the fixed point data of M can be achieved in the following way: begin with the empty set, and apply a combination of the following
steps.

(1) Add {+, a, b} and {−, a, b}, where a and b are relatively prime positive integers.
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