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a b s t r a c t

We study geodesics along a noncompact Kerr–Newman instanton, where the asymptotic
geometry is either de Sitter or anti-de Sitter. We use first integrals for the Hamilton–Jacobi
equation to characterize trajectories both near and away from horizons. We study the
interaction of geodesics with special features of the metric, particularly regions of angular
degeneracy or ‘‘theta horizons’’ in the de Sitter case. Finally, we characterize a number of
stable equilibrium orbits.
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1. Introduction

Much is known already regarding geodesics along Kerr spacetimes. Physically, these correspond to particles under the
influence of a rotating black hole. Such geodesics have also been studied in the presence of charge and a nonzero cosmological
constant (e.g. [1]). Less studied are geodesics along the corresponding gravitational instanton. In the Riemannian setting,
there are no timelike curves that play the role of usual matter. That being said, geodesics in gravitational instantons do have
physical interpretations: for instance, as the relative motion of certain monopoles. Notably, the Kaluza–Klein monopole can
be embedded in a 5D Taub-NUT instanton, [2]. We will treat only a 4D instanton (of Kerr type) here, but the differential–
geometric question of classifying its geodesics is still well-posed and may have applications to various scattering questions
(monopole or otherwise) in instanton backgrounds. Generally speaking, Riemannian solutions to the Einstein equations have
emerged as state transition probabilities in Euclidean quantumgravity [3–5] and are expected to encode quantumproperties
of their Lorentzian counterparts. Combining this with the general importance of the Kerr solution in the context of recent
developments such as AdS/CFT and Kerr/CFT, understanding the geometric structure of the Riemannian analogue of Kerr is
a priority.

Here, we consider a noncompact, incomplete Kerr–Newman–(anti-)de Sitter instanton. One can employ a periodic
identification of the imaginary time coordinate to remove the singularity and create a compact version of the instanton, as
suggested in [6,7] and then carried out and explored in [4,5]. This compact space will have a complete, everywhere positive-
definite Einstein metric. We, on the other hand, obtain the instanton metric from a Wick rotation but do not perform the
periodic identification. As such, the solution has degeneracies and signature changes. In particular, it is only Riemannian on
certain submanifolds, and so one caveat is that the solution is a gravitational instanton only in a weaker sense.

Given that geodesics along the manifold in question possess fixed values of the first integrals that correspond usually
to rest mass, energy, and angular momentum, we refer to them in any event as ‘‘particles’’ (even if they originate in the
Riemannian part of the manifold, where they are spacelike). For both the de Sitter and anti-de Sitter geometries, we study
the effect of the first integrals on the geodesic evolution, paying particular attention to their potential functions and to their
sensitivity to the cosmological constant, the charge, and whether or not the singularity is slowly or rapidly rotating. In the

* Corresponding author.
E-mail addresses: aidan.lindberg@usask.ca (A. Lindberg), rayan@math.usask.ca (S. Rayan).

https://doi.org/10.1016/j.geomphys.2018.05.018
0393-0440/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.geomphys.2018.05.018
http://www.elsevier.com/locate/geomphys
http://www.elsevier.com/locate/geomphys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geomphys.2018.05.018&domain=pdf
mailto:aidan.lindberg@usask.ca
mailto:rayan@math.usask.ca
https://doi.org/10.1016/j.geomphys.2018.05.018


A. Lindberg, S. Rayan / Journal of Geometry and Physics 132 (2018) 114–130 115

Table 1.1
Block structure of AdS ∆r roots.

r ∈ (r+,∞) AdS Block

r ∈ (r−, r+) Block I
r ∈ (−∞, r−) Block II

Table 1.2
Block structure of dS ∆r roots.

r ∈ (r++,∞) dS+ Block

r ∈ (r+, r++) Block I
r ∈ (r−r+) Block II
r ∈ (r−−, r−) Block III
r ∈ (−∞, r−−) dS− Block

de Sitter situation, themetric degenerates in an interesting fashion – there are surfaces of angular degeneracy (as referred to
in [8]) – and we study the trajectories of these particles near these degenerations. We also characterize a number of stable
equilibrium orbits in this case.

1.1. Metric

Here, we consider the Kerr–Newman–(anti)-de Sitter, or KN(A)dS, instanton, which has underlying 4-manifold M =

R2
× S2 and a metric g that solves the Riemannian Einstein–Maxwell field equations with positive (negative) cosmological

constant. The field equations are

Rµν +

(
Λ−

1
2
R
)
gµν = 2

(
FµαFαν −

1
4
FαβFαβgµν

)
dF = d ⋆ F = 0,

where gµν is the metric, Rµν and R are the Ricci tensor and scalar curvature respectively, Λ is the cosmological constant
(a fixed real number), F is the Maxwell field, and ⋆ is the Hodge star. Choosing Λ positive results in a geometry that is
asymptotically de Sitter whileΛ negative results in an anti-de Sitter geometry.

After fixing Λ (and setting the magnetic charge parameter p to 0), there is a family of Lorentzian KN(A)dS metrics
depending on 3 real numbers:M , the total mass of the instanton; a, the angular momentum per unit mass; and e, the charge
per unit mass. That such solutions to the Einstein–Maxwell equations are parametrized by a, e,M is essentially the ‘‘No Hair
Theorem’’ of general relativity. The KN(A)dS instanton solution is obtained from the corresponding spacetime solution in
the standard way via a Wick transformation:

e ↦→ ie, a ↦→ ia, and t ↦→ it,

where i =
√

−1 (cf. [4,5] for instance). The Wick-rotated metric g then has the following line element in Boyer–Lindquist
coordinates (r, t, θ, ϕ) on R2

× S2:

ds2 =
Σ

∆r
dr2 +

Σ

∆θ
dθ2 +

S2

Ξ 2Σ
∆θ (adt + (r2 − a2)dϕ)2 +

∆r

Ξ 2Σ
(dt − aS2dϕ)2,

in which we have functions

Σ = r2 − a2cos2θ

∆r = (r2 − a2)(1 − Lr2) − 2Mr − e2

∆θ = 1 − La2cos2θ

Ξ = 1 − La2,

with L =
Λ
3 . We also note that the Maxwell potential under which g solves the field equations is

A =
er
ΣΞ

(−dt + asin2θdϕ).

Wepartition the instanton in accordancewith the roots of the∆r function. There are exactly two real roots for the anti-de
Sitter instanton and four for its de Sitter counterpart (except for at extreme values of the parameters, as discussed in the
Appendix). The partitions are defined in Tables 1.1 and 1.2.

Note that there will only exist one negative root for both instantons. This is r− in the AdS instanton, and r−− in the dS
instanton. The details of determining these root structures are deferred to the Appendix.

It is worth noting that, while we use the word ‘‘instanton’’ to describe the metric, this is only a gravitational instanton in
an incomplete sense: we do not impose the ALE decay at infinity and themetric signature is not constant. (This is in contrast
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