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a b s t r a c t

We give a method to construct Poisson brackets { · , · } on Banach manifolds M , for which
the value of {f , g} at some point may depend on higher order derivatives of the smooth
functions f , g : M → R and not only on the first-order derivatives, as it is the case on all
finite-dimensional manifolds. We discuss specific examples in this connection, as well as
the impact on the earlier research onPoisson geometry of Banachmanifolds. Those brackets
are counterexamples to the claim that the Leibniz property for any Poisson bracket on a
Banach manifold would imply the existence of a Poisson tensor for that bracket.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The Poisson brackets in infinite-dimensional setting have played for a long time a significant role in various areas of
mathematics including mechanics (both classical and quantum) and integrable systems theory (see e.g. [1–4]). However the
rigorous approach to the notion of Poisson manifold in the context of Banach space is relatively recent (see [5] and also [6]).
It is known that the Poisson brackets on infinite-dimensional manifolds lack some of the properties known from the finite-
dimensional case. It was shown for instance in [5] that the existence of Hamiltonian vector fields requires an additional
condition on the Poisson tensor in the case of manifolds modeled on a non-reflexive Banach space (i.e. a Banach space E that
is not canonically isomorphic to its second dual E ⊊ E∗∗, where E∗ denotes the topological dual of a Banach space). Moreover
on some manifolds, Poisson brackets need not be local although as far as we know a counterexample is not known yet, see
a related discussion in [7].

The aim of this paper is to initiate the investigation of still another phenomenon that is specific to Poisson geometry on an
infinite dimensional manifoldM , namely the existence of Poisson brackets of higher order. That is, Leibniz property does not
ensure that the bracket depends only on the first-order derivatives of functions. In particular, we construct Poisson brackets
that are counterexamples to the statements given in the literature (see [5, Sect. 2] or subsequently [8, Sect. 1]), where it was
claimed that the existence of a Poisson tensor Π follows from Leibniz property and skew symmetry of the Poisson bracket
{·, ·}, in particular for everym ∈ M one could find a bounded bilinear functional Πm : T ∗

mM × T ∗
mM → R satisfying

{f , g}(m) = Πm(f ′

m, g ′

m)
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where f ′
m, g ′

m ∈ T ∗
mM are the differentials of f , g ∈ C∞(M) atm ∈ M . A related fact in [3, Thm. 4.2.16] does hold, but we show

that it is not applicable here (see Proposition 2).
Section 2 contains our main results, which show a general way to construct higher order Poisson brackets out of queer

vector fields (a notion introduced in [9]). We conclude the paper with remarks on Hamiltonian vector fields associated to
these general Poisson brackets, andwe also suggest a definition of Banach Poissonmanifolds that clarifies the one introduced
in [5].

All Banach and Hilbert spaces considered in this paper are real. By manifold we will always mean a smooth real manifold
modeled on a Banach space.

2. A construction of queer Poisson brackets

Our general construction of queer Poisson brackets (Theorem 3) needs some preparations on tangent vectors to Banach
manifolds. There are two major approaches to tangent vectors, namely the kinematic one and the operational one. These
approaches lead to the same notion for finite-dimensional manifolds, but it is well known that this is no longer the case in
infinite dimensions. A kinematic tangent vector v ∈ TmM to a BanachmanifoldM at a pointm ∈ M is an equivalence class of
curves passing through that point (for the precise definition see e.g., [3]). On the other hand, an operational tangent vector
is defined as a derivation acting in the space of germs of functions (see [9]). Let C∞

m (M) be the set of germs of all smooth
functions at a pointm. We denote by Lk(TmM;R) the Banach space of bounded k-linear functionals on TmM with values in R
and let f (k)m ∈ Lk(TmM;R) be the kth differential at the pointm ∈ M of a germ or a function.

Definition 1. An operational tangent vector at a point m ∈ M is a linear map δ : C∞
m (M) → R satisfying the Leibniz rule :

δ(fg) = δf g(m) + f (m) δg. (1)

For any open subset U ⊆ M withm ∈ U one has the map C∞(U) → C∞
m (M) that takes every function on U to its germ atm,

and this leads to a canonical pull-back of δ to C∞(U), also denoted by δ.
An operational vector field on M is a collection of maps δU : C∞(U) → C∞(U) for each open set U ⊂ M , compatible

with restrictions to open subsets and defining an operational tangent vector δm at everym ∈ M .

Definition 2. The operational tangent vector δ is of order n if it can be expressed in the form

δf =

n∑
k=1

ℓk(f (k)m ), (2)

where ℓk : Lk(TmM;R) → R are continuous and linear, and ℓn does not vanish identically on the subspace of symmetric
n-linear maps in Lk(TmM;R). Otherwise the order of δ is infinite. The operational tangent vectors of order at least 2 are called
queer.

The operational vector field δ is of order at most n if one has (2) at all m ∈ M for some family of smooth sections ℓk of
the bundle

⨆
m∈M (Lk(TmM;R))∗.

The existence of operational tangent vectors of order higher than three (or infinite) is an open problem as far as we know.
The Leibniz rule (1) satisfied by δ implies certain algebraic conditions on functionals ℓk, see [9, 28.2]. Any kinematic tangent
vector gives an operational tangent vector of order 1. All operational tangent vectors of order 1 are given by elements of
T ∗∗M .

We now show that there are queer operational tangent vectors onmany Banach spaces, extending a construction from [9].

Proposition 1. There are no operational tangent vectors of order two on the Banach space lp of p-summable sequences for
2 < p < ∞. If 1 ≤ p ≤ 2, then there are non-trivial operational tangent vectors of order two on lp.

Proof. The proof of existence of operational tangent vectors of order two is inspired by [9, Rem. 28.8]. Namely, let E be a
Banach space and consider the natural inclusion of E∗

× E∗ into L2(E;R) by

(f , g) ↦→ (f ⊗ g : (v, w) ↦→ f (v)g(w)) .

In general (contrary to the finite-dimensional case) the linear span of its imagemay not be dense. A functional ℓ ∈ (L2(E;R))∗
defines an operational tangent vector of order 2 at any a ∈ E by

δℓf = ℓ(f ′′

a ) (3)

if and only if it vanishes on the image of E∗
× E∗.

Hence the existence of an operational tangent vector of order 2 on lp is equivalent to the existence of a nonzero continuous
linear functional ℓ on L2(lp;R) ∼= L(lp; (lp)∗) that vanishes on (lp)∗ × (lp)∗.

Every bounded linear map from lp to (lp)∗ is compact if 2 < p < ∞, by Pitt’s theorem [10, Thm. 4.23]. Moreover since all
(lp)∗ spaces have the approximation property, the closure of linear span of (lp)∗ × (lp)∗ coincides with the space of compact
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