Estimates for eigenvalues of the Wentzell-Laplace operator

Feng Du ${ }^{\text {a,b,*, Qiaoling Wang }}{ }^{\mathrm{b}}$, Changyu Xia ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics and Physics Science, Jingchu University of Technology, Jingmen, 448000, China
${ }^{\text {b }}$ Departamento de Matemática, Universidade de Brasilia, 70910-900-Brasilia-DF, Brazil

ARTICLE INFO

Article history:

Received 26 October 2016
Received in revised form 1 November 2017
Accepted 28 February 2018
Available online 7 March 2018

MSC:

35P15
53C40
58C40
Keywords:
Wentzell-Laplace operator
Eigenvalues
r-mean curvature
Mean curvature

A B S T R A C T
 For an n-dimensional compact submanifold M with boundary in the Euclidean space \mathbb{R}^{N},

 we give some sharp estimates for eigenvalues of the Wentzell-Laplace operator of M.© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let (M, g) be an n-dimensional compact Riemannian manifold with boundary ∂M, and let $\bar{\Delta}$ and Δ be the LaplaceBeltrami operators on M and ∂M, respectively. Assume that τ is a real number and consider the eigenvalue problem for Wentzell boundary conditions

$$
\left\{\begin{array}{cc}
\bar{\Delta} u=0, & \text { in } M \tag{1.1}\\
-\tau \Delta u+\frac{\partial u}{\partial v}=\lambda u, & \text { on } \partial M
\end{array}\right.
$$

where v denotes the outward unit normal vector field of ∂M. When M is a bounded domain in a Euclidean space, the above problem has been studied recently in [1]. A general derivation of Wentzell boundary conditions can be found in [2]. More recently, Xia and Wang [3] gave some estimates for eigenvalues of problem (1.1) when M is a Riemannian manifold.

When $\tau=0$, the eigenvalue problem (1.1) becomes the following Steklov eigenvalue problem:

$$
\begin{equation*}
\bar{\Delta} u=0 \text { in } M, \quad \frac{\partial u}{\partial v}=p u \text { on } \partial M \tag{1.2}
\end{equation*}
$$

It is known that the Steklov problem (1.2) has a discrete spectrum

$$
0=p_{0}<p_{1} \leq p_{2} \leq \cdots \leq p_{k} \leq \cdots
$$

[^0]The study of this problem was started by Steklov [4], whose motivation came from physics. The function u represents the steady state temperature on M such that the flux on the boundary is proportional to the temperature. From then on, for the Steklov eigenvalue problem, many interesting results have been obtained (cf. [5-15]).

When $\tau \geq 0$, the spectrum of the Laplacian with Wentzell condition consists in an increasing countable sequence of eigenvalues

$$
0=\lambda_{0, \tau}<\lambda_{1, \tau} \leq \lambda_{2, \tau} \leq \cdots \leq \lambda_{k, \tau} \leq \cdots
$$

with corresponding real orthonormal (in $L^{2}(\partial M)$) eigenfunctions $u_{0}, u_{1}, u_{2}, \ldots$. Throughout the paper, we assume that $\tau \geq 0$.
We adopt the convention that each eigenvalue is repeated according to its multiplicity. Consider the Hilbert space

$$
\begin{equation*}
H(M)=\left\{u \in H^{1}(M), \operatorname{Tr}_{\partial M}(u) \in H^{1}(\partial M)\right\} \tag{1.3}
\end{equation*}
$$

where $\operatorname{Tr}_{\partial M}$ is the trace operator. We define on $H(M)$ two bilinear forms

$$
\begin{equation*}
B_{\tau}(u, v)=\int_{M}\langle\bar{\nabla} u, \bar{\nabla} v\rangle d V+\tau \int_{\partial M}\langle\nabla u, \nabla v\rangle d A, \quad D(u, v)=\int_{\partial M} u v d A \tag{1.4}
\end{equation*}
$$

where $\bar{\nabla}$ and ∇ are the gradient operators on M and ∂M, respectively. Since τ is nonnegative, the two bilinear forms are positive and the variational characterization for the k th eigenvalue is

$$
\begin{equation*}
\lambda_{k, \tau}=\min \left\{\frac{B_{\tau}(v, v)}{D(v, v)}: v \in H(M), v \neq 0, \int_{\partial M} v u_{j} d A=0, j=1, \ldots, k-1\right\}, k=1,2, \ldots \tag{1.5}
\end{equation*}
$$

In particular, when $k=1$, the minimum is taken over the functions orthogonal to the eigenfunctions associated to $\lambda_{0, \tau}=0$, i.e., the constant functions.

In this paper, we firstly give a Reilly-type inequality for eigenvalues of the problem (1.1) which generalizes the corresponding result of the Steklov eigenvalues in [16]. Before stating the result, let us fix the notion of the higher order mean curvature. One can also find it in [17]. Let (W, g) be an m-dimensional submanifold immersed in an N-dimensional space form $\mathbb{Q}^{N}(c), c=0,1$, i.e., $\mathbb{Q}^{N}(0)$ is the Euclidean space \mathbb{R}^{m+p} and $\mathbb{Q}^{N}(1)$ is the unit sphere \mathbb{S}^{N}. Denote by $y: W \rightarrow \mathbb{Q}^{N}(c)$ the immersion and let \mathbf{h} be the second fundamental form of W, which is normal-vector valued. Suppose that $\left\{e_{i}\right\}_{i=1}^{m}$ is a local orthonormal basis for the tangent bundle of W with dual $\left\{\theta_{i}\right\}_{i=1}^{m}$, and moreover, $\left\{e_{A}\right\}_{A=m+1}^{N}$ is a local orthonormal basis for the normal bundle of W. Let $\mathbf{h}_{i j}:=\mathbf{h}\left(e_{i}, e_{j}\right)=\sum_{A=m+1}^{N} h_{i j}^{A} e_{A}$, where $h_{i j}^{A}, i, j=1, \ldots, m, A=m+1, \ldots, N$, are the components of the second fundamental form of W. Clearly, $\left(\mathbf{h}_{i j}\right)$ is a vector matrix with respect to the frame $\left\{e_{i}\right\}_{i=1}^{m}$. One can define a (0,2)-tensor T_{r} for $r \in\{0,1, \ldots, m-1\}$ as follows. If r is even, we set

$$
\begin{aligned}
T_{r} & =\frac{1}{r!} \sum_{\substack{i_{1} \cdots i_{i} i \\
j_{1} \cdots \cdots j_{r j}}} \delta_{j_{1} \cdots j_{r j} j}^{i_{1} \cdots i_{r} i}\left\langle\mathbf{h}_{i_{1} j_{1}}, \mathbf{h}_{i_{2} j_{2}}\right\rangle \cdots\left\langle\mathbf{h}_{i_{r-1} j_{r-1}}, \mathbf{h}_{i_{r} j_{r}}\right\rangle \theta_{i} \otimes \theta_{j} \\
& =\sum_{i, j} T_{r j}^{i} \theta_{i} \otimes \theta_{j}
\end{aligned}
$$

where $\delta_{j_{1} \cdots j_{r} j}^{i_{1} \cdots i_{i} i}\left(1 \leq i_{1}, \ldots, i_{r}, i \leq m, 1 \leq j_{1}, \ldots, j_{r}, j \leq m\right)$ are the generalized Kronecker symbols and

$$
T_{r j}^{i}=\frac{1}{r!} \sum_{\substack{i_{1} \cdots i_{i} i \\ j_{1} \cdots j_{r j}}} \delta_{j_{1} \cdots j_{r j} j}^{i_{1} \cdots i_{r} i}\left\langle\mathbf{h}_{i_{1} j_{1}}, \mathbf{h}_{i_{2} j_{2}}\right\rangle \cdots\left\langle\mathbf{h}_{i_{r-1} j_{r-1}}, \mathbf{h}_{i_{r} j_{r}}\right\rangle
$$

We also set

$$
\begin{aligned}
T_{r-1} & =\frac{1}{(r-1)!} \delta_{j_{1} \cdots j_{r} j}^{i_{1 \cdots i} i}\left\langle\mathbf{h}_{i_{1} j_{1}}, \mathbf{h}_{i_{2} j_{2}}\right\rangle \cdots\left\langle\mathbf{h}_{i_{r-3} j_{r-3}}, \mathbf{h}_{i_{r-2} j_{r-2}}\right\rangle \mathbf{h}_{i_{r-1} j_{r-1}} \theta_{i} \otimes \theta_{j} \\
& =\left(T_{(r-1) i j}^{A} e_{A}\right) \theta_{i} \otimes \theta_{j},
\end{aligned}
$$

where

$$
T_{(r-1) i j}^{A}=\frac{1}{(r-1)!} \delta_{j_{1} \cdots j_{r} j}^{i_{1} \cdots i_{r} j}\left\langle\mathbf{h}_{i_{1} j_{1}}, \mathbf{h}_{i_{2} j_{2}}\right\rangle \cdots\left\langle\mathbf{h}_{i_{r-3} j_{r-3}}, \mathbf{h}_{i_{r-2} j_{r-2}}\right\rangle h_{i_{r-1} j_{r-1}}^{A}
$$

For any even integer $r \in\{0,1, \ldots, m-1\}$, the r th mean curvature function \mathbf{H}_{r} and $(r+1)$-th mean curvature vector field \mathbf{H}_{r+1} are defined by

$$
\begin{align*}
& \mathbf{H}_{r}=\frac{1}{c_{n}^{r} r} T_{(r-1) i j}^{A} h_{i_{r-1} j_{r-1}}^{A}, \tag{1.6}\\
& \mathbf{H}_{r+1}=\frac{1}{c_{n}^{r+1}(r+1)} T_{r j}^{i} h_{i_{r-1} j_{r-1}}^{A} e_{A}, \tag{1.7}
\end{align*}
$$

https://daneshyari.com/en/article/8255465

Download Persian Version:

https://daneshyari.com/article/8255465

Daneshyari.com

[^0]: * Corresponding author at: School of Mathematics and Physics Science, Jingchu University of Technology, Jingmen, 448000, China.

 E-mail addresses: defengdu123@163.com (F. Du), wang@mat.unb.br (Q. Wang), xia@mat.unb.br (C. Xia).

