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1. Introduction

Let (M, g) be an n-dimensional compact Riemannian manifold with boundary aM, and let A and A be the Laplace-
Beltrami operators on M and dM, respectively. Assume that 7 is a real number and consider the eigenvalue problem for
Wentzell boundary conditions

Au =0, in M,
du (1.1)
—TAU+ P = Al, on oM,
v

where v denotes the outward unit normal vector field of M. When M is a bounded domain in a Euclidean space, the above
problem has been studied recently in [1]. A general derivation of Wentzell boundary conditions can be found in [2]. More
recently, Xia and Wang [3] gave some estimates for eigenvalues of problem (1.1) when M is a Riemannian manifold.

When t = 0, the eigenvalue problem (1.1) becomes the following Steklov eigenvalue problem:

- . ou
Au=0inM, — =pu onadM. (1.2)
av
It is known that the Steklov problem (1.2) has a discrete spectrum
O=po<pi=p2=--=pc=--.
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The study of this problem was started by Steklov [4], whose motivation came from physics. The function u represents the
steady state temperature on M such that the flux on the boundary is proportional to the temperature. From then on, for the
Steklov eigenvalue problem, many interesting results have been obtained (cf. [5-15]).

When t > 0, the spectrum of the Laplacian with Wentzell condition consists in an increasing countable sequence of
eigenvalues

0 :)“O,Z < )\l,r =< )\2,1’ <---= )\k,r =<

with corresponding real orthonormal (in L?(dM)) eigenfunctions ug, u1, Uy, . . .. Throughout the paper, we assume that t > 0.
We adopt the convention that each eigenvalue is repeated according to its multiplicity. Consider the Hilbert space

H(M) = {u € H'(M), Trym(u) € H'(dM)} , (1.3)
where Try), is the trace operator. We define on H(M) two bilinear forms
B.(u,v) = / (Vu, Vo)dV + 1 / (Vu, Vv)dA, D(u,v) = f uvda, (1.4)
M oM aM

where V and V are the gradient operators on M and M, respectively. Since t is nonnegative, the two bilinear forms are
positive and the variational characterization for the kth eigenvalue is

B:(v,v)
D0 ve

In particular, when k = 1, the minimum is taken over the functions orthogonal to the eigenfunctions associated to 1o, = 0,
i.e., the constant functions.

In this paper, we firstly give a Reilly-type inequality for eigenvalues of the problem (1.1) which generalizes the
corresponding result of the Steklov eigenvalues in [16]. Before stating the result, let us fix the notion of the higher order
mean curvature. One can also find it in [17]. Let (W, g) be an m-dimensional submanifold immersed in an N-dimensional
space formQM(c), c = 0, 1,i.e., Q" (0)is the Euclidean space R™*P and Q" (1) is the unit sphere S¥. Denote by y : W — QM(c)
the immersion and let h be the second fundamental form of W, which is normal-vector valued. Suppose that {e;}" ; is a local
orthonormal basis for the tangent bundle of W with dual {6;}" ,, and moreover, {e4 }Lm 41 isalocal orthonormal basis for the

)»k_r=min{ H(M),v;éo,/ vujdA=0,j=1,...,k—1},k=1,2,.... (1.5)
aMm

normal bundle of W. Let h; := h(e;, ¢;) = ZA=m+lhijeA, where hu, i,j=1,...,m, A=m+1,...,N, are the components
of the second fundamental form of W. Clearly, (hy) is a vector matrix with respect to the frame {e;}!" ;. One can define a
(0, 2)—tensor T, forr € {0, 1, ..., m — 1} as follows. If r is even, we set

i 'T' S L. . .
T r‘ E : 511 ]r_] 1111 ’ lsz> e (hlr—llr—] ’ h1r1r>01 ® 9]

iq-eiri
Jy-dri

DT80,
y
where 5” "' (1 <iy,....i,i<m1<]j,....jr,j < m)are the generalized Kronecker symbols and

. 1 L
i ieedrld g U W | R -
Trj = h E 8j1---jrj <h1111’h1212) <h'r—1]r—1’h1rjr)'
Tigeeiri
J1-rd

We also set
1 iq-eiri
Tra = = 1)!8j11---jrj (i higgy) - (Bi g g By g ) By, 6 ® 6
= (T-njen) 6 ® 6,
where
T A

To—nj = R vt (i Biggy ) - (g sy ) R
For any even integerr € {0, 1, ..., m — 1}, the rth mean curvature function H, and (r + 1)-th mean curvature vector field
H,; are defined by

1
H=—T\ .h . (1.6)

crr (r=10j" i —1jr—1°
n

1 )
Ho1=— T . e, (1.7)
r+1 C:]’+1(r+ 1) 7 —1Jr—1 A
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