Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/geomphys

Morse-Darboux lemma for surfaces with boundary

Ilia Kirillov

Moscow State University, Russia

ARTICLE INFO

Article history: Received 27 April 2017 Received in revised form 23 November 2017 Accepted 22 February 2018 Available online 4 March 2018 ABSTRACT

We formulate and prove an analog of the classical Morse–Darboux lemma for the case of a surface with boundary.

© 2018 Published by Elsevier B.V.

Keywords: Morse functions Morse lemma Morse-Darboux lemma Surfaces with boundary

1. Introduction

Throughout this paper the word *smooth* means C^{∞} smooth. The aim of this paper is to prove the following theorem.

Theorem 1. Let *M* be a 2D surface with an area form ω , and let $f : M \to \mathbb{R}$ be a smooth function. Let also $0 \in \partial M$ be a regular point for *f* and a non-degenerate critical point for $f|_{\partial M}$. Then there exists a chart (p, q) centered at 0 such that $\omega = dp \wedge dq$, and $f = \alpha \circ S$, where $S = q + p^2$ or $S = q - p^2$. The function α of one variable is smooth in the neighborhood of the origin $0 \in \mathbb{R}$ and $\alpha'(0) \neq 0$. Furthermore, we have $q \ge 0$ wherever *q* is defined and the boundary ∂M satisfies the equation q = 0. (See Fig. 1.)

Theorem 1 is closely related to the classical Morse–Darboux lemma. Let us recall the statement of that lemma.

Theorem 2. Let *M* be a 2D surface with an area form ω , and let $f : M \to \mathbb{R}$ be a smooth function. Let also $0 \in M \setminus \partial M$ be a non-degenerate critical point for *f*. Then there exists a chart (p, q) centered at 0 such that $\omega = dp \wedge dq$, and $f = \alpha \circ S$, where S = pq or $S = p^2 + q^2$. The function α of one variable is smooth in the neighborhood of the origin $0 \in \mathbb{R}$ and $\alpha'(0) \neq 0$.

The Morse–Darboux lemma is a particular case of Le lemme de Morse isochore, see [1], and also a particular case of Eliasson's theorem on the normal form for an integrable Hamiltonian system near a non-degenerate critical point, see [2,3]. The Morse–Darboux lemma is an important tool in topological hydrodynamics, see [4], and theory of integrable systems, see [5].

We expect that the result of the present paper will also be useful in 2D fluid dynamics. In particular, it gives a partial answer to Problem 5.6 from [6] on the asymptotical properties of measures on Reeb graphs.

This paper is organized as follows. In Section 2 we formulate Theorem 1' which is equivalent to Theorem 1. The proof of Theorem 1' is given in Section 4. Section 3 contains several lemmas useful for the proof of Theorem 1'.

E-mail address: ilyusha.kirillov@gmail.com.

https://doi.org/10.1016/j.geomphys.2018.02.017 0393-0440/© 2018 Published by Elsevier B.V.

Fig. 1. Level sets of *f*. The horizontal axis is the boundary of *M*.

2. Reformulation of the main theorem

Theorem 1'. Let $\omega = \omega(x, y)dx \wedge dy$ be an area form on \mathbb{R}^2 , and f = f(x, y) be a smooth function such that $f_x(0, 0) = 0$, $f_y(0, 0) > 0$ and $f_{xx}(0, 0) > 0$. Then there exists a chart (p, q) centered at (0, 0) such that $\omega = dp \wedge dq$, $f(p, q) = \alpha(p^2 + q)$, and q = 0 if and only if y = 0. The function α of one variable is smooth in the neighborhood of the origin $0 \in \mathbb{R}$ and $\alpha'(0) > 0$.

Proposition 1. Theorem 1 follows from Theorem 1'.

Proof. Let us choose a chart (x, y) centered at O in ∂M such that $P \in \partial M$ if and only if y(P) = 0. The function f(x, y) and the form $\omega(x, y)dx \wedge dy$ can be smoothly extended on some neighborhood of (0, 0). As (0, 0) is non-degenerate critical point for $f|_{\partial M}$ we have $f_x(0, 0) = 0$, $f_y(0, 0) \neq 0$, $f_{xx}(0, 0) \neq 0$. To fulfill conditions $f_y(0, 0) > 0$, $f_{xx}(0, 0) > 0$, we may need some of the following transformations: $f \rightarrow -f$, $y \rightarrow -y$. Now, we obtain the chart (p, q) from Theorem 1'. If $q \leq 0$ we need one more transformation: $q \rightarrow -q$, $p \rightarrow -p$. It remains to restrict the chart (p, q) to the upper half plane. \Box

3. Necessary lemmas

In this section we assume that conditions of Theorem 1' hold. Also from now on we will assume that f(0, 0) = 0. This will simplify notation.

First of all, we want to prove an analog of the classical Morse Lemma for a surface with boundary.

Lemma 1. There exists a chart (\hat{x}, \hat{y}) centered at (0, 0) such that

1.
$$\hat{x}(0, 0) = \hat{y}(0, 0) = 0;$$

2. $f(\hat{x}, \hat{y}) = \hat{x}^2 + \hat{y};$
3. $\hat{y}(x, y) = 0$ if and only if $y = 0.$

Proof. Hadamard's lemma implies that

$$f(x, y) = f_1(x, y)x + f_2(x, y)y,$$

where f_1 and f_2 are smooth functions, and $f_1(0, 0) = f_x(0, 0)$, $f_2(0, 0) = f_y(0, 0)$. Since $f_x(0, 0) = 0$ Hadamard's lemma similarly implies that

$$f(x, y) = (f_{11}(x, y)x + f_{12}(x, y)y)x + f_2(x, y)y$$

= $f_{11}(x, y)x^2 + f_{12}(x, y)xy + f_2(x, y)y$
= $(x\sqrt{f_{11}(x, y)})^2 + y(f_{12}(x, y)x + f_2(x, y)).$

Recall that $f_{xx}(0, 0) > 0$ and also notice that $f_{11}(0, 0) = \frac{1}{2}f_{xx}(0, 0)$. Consider the following transformation of coordinates

$$\hat{x}(x, y) = \sqrt{f_{11}(x, y)x}$$
$$\hat{y}(x, y) = y(f_{12}(x, y)x + f_2(x, y))$$

The Jacobian determinant of this transformation at the point (0, 0) is equal to $\sqrt{f_{11}(0, 0)}f_2(0, 0) > 0$. It follows from the inverse function theorem that functions \hat{x} and \hat{y} form a chart centered at (0, 0). By construction

$$f(\hat{x}, \hat{y}) = \hat{x}^2 + \hat{y},$$

and $\hat{y}(x, y) = y(f_{12}(x, y)x + f_2(x, y)) = 0$ if and only if $y = 0.$

Download English Version:

https://daneshyari.com/en/article/8255473

Download Persian Version:

https://daneshyari.com/article/8255473

Daneshyari.com