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a b s t r a c t

Wepropose a rigorous derivation of the Bekenstein upper limit for the entropy/information
that can be contained by a physical system in a given finite region of spacewith given finite
energy. The starting point is the observation that the derivation of such a bound provided
by Casini (2008) is similar to the description of the black hole incremental free energy that
had been given in Longo (1997). The approach here is different but close in the spirit to
Casini (2008). Our bound is obtained by operator algebraic methods, in particular Connes’
bimodules, Tomita–Takesaki modular theory and Jones’ index are essential ingredients
inasmuch as the von Neumann algebras in question are typically of type III . We rely on the
general mathematical framework, recently set up in Longo (2018), concerning quantum
information of infinite systems.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The Bekenstein bound is a universal limit on the entropy that can be contained in a physical system of given size and total
energy [1]. If a system of total energy E, including rest mass, is enclosed in a sphere of radius R, then the entropy S of the
system is bounded by

S ≤ λRE ,

where λ > 0 is a constant (the value λ = 2π is often proposed).
In [2], H. Casini gave an interesting derivation for this bound, based on relative entropy considerations. It was observed,

following [3], that, in order to get a finite measure for the entropy carried by the system in a region of the space, one should
subtract from the bare entropy of the local state the entropy corresponding to the vacuum fluctuations, which is entirely
due to the localization. A similar subtraction can be done to define a localized form of energy.

The argument in [2] is following. One considers a space region V and the von Neumann algebra A(O) of the observables
localized in the causal envelop O of V . The restriction ρV of a global state ρ to A(O) has formally an entropy given by von
Neumann’s entropy

S(ρV ) = − Tr(ρV log ρV ) ,

that is known to be infinite. So one subtracts the vacuum state entropy

SV = S(ρV ) − S(ρ0
V )

with ρ0
V the density matrix of the restriction of the vacuum state ρ0 to A(O).
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Similarly, if K is the Hamiltonian for V , then one considers the difference of the expectations of K in the given state and
in the vacuum state

KV = Tr(ρVK ) − Tr(ρ0
VK ) . (1)

The version of the Bekenstein bound in [2] is SV ≤ KV , namely

S(ρV ) − S(ρ0
V ) ≤ Tr(ρVK ) − Tr(ρ0

VK ) (2)

which is equivalent to

S(ρV |ρ0
V ) ≡ Tr

(
ρV (log ρV − log ρ0

V )
)

≥ 0 ,

namely to the positivity of the relative entropy. One is then left to estimate the right hand side of (2). Here the (dimensionless)
local Hamiltonian K is defined by ρ0

V = e−K/Tr(eK ), up to a scalar shifting that does not affect the definition of (1).
The above argument, thought in terms of a cutoff theory, breaks for general Quantum Field Theory as the local von

Neumann algebras A(O) are not of type I; under general assumptions, A(O) is a factor of type III so no trace Tr and no
density matrix ρ are definable. Yet, as is well known, modular theory and Araki’s relative entropy S(ϕ|ψ) are definable in
general. We aim at a different argument, close in the spirit to the above discussion, that makes rigorous sense.

The point is that the above argument is quite similar to the rigorous description of the black hole incremental free energy
and entropy given in [4] in the general Quantum Field Theory framework. Recently, this work led to a universal formula for
the incremental free energy, that can be interpreted in several different contexts. This paper is an illustration of this fact.

We take the point of view that relative entropy is a primary concept and other entropy quantities should be expressed
in terms of relative entropies (cf. also [5]). This is the case, for example, for the von Neumann entropy. The von Neumann
entropy S(ϕ) of a state ϕ of a von Neumann algebra M may be expressed in terms of the relative entropy:

S(ϕ) = sup
(ϕi)

∑
i

S(ϕ|ϕi)

where the supremum is taken over all finite families of positive linear functionals ϕi of M with
∑

iϕi = ϕ (see [6]). Clearly
S(ϕ) cannot be finite unless M is of type I .

However, rather than tracing back the Bekenstein bound to the positivity of the relative entropy, here we are going to
rely on the positivity of the incremental free energy, or conditional entropy, which can be obtained in two possible ways:
by the monotonicity of the relative entropy in relations to Connes–Stø rmer’s entropy [7], or by linking it to Jones’ index [8].
In this respect, our argument is close to the derivation of the bound in [9], that relies on the monotonicity of the relative
entropy.

2. Bound for the entropy

We now are going to compare two states of a physical system, ωin is a suitable reference state, e.g. the vacuum in QFT,
and ωout is a state that can be reached from ωin by some physically realizable process (quantum channel). We relate the
incremental energy and the entropy.

2.1. Mathematical and general setting

WithN ,M being vonNeumann algebras, anN−M bimodule is a Hilbert spaceH equippedwith a normal representation
ℓ of N on H and a normal anti-representation r of M on H, and ℓ(n) commutes with r(m), for all n ∈ N , m ∈ M [10]. For
simplicity, here we assume that N and M are factors. A vector ξ ∈ H is said to be cyclic for H if it is cyclic for the von
Neumann algebra ℓ(N ) ∨ r(M) generated by ℓ(N ) and r(M).

Proposition 2.1. Let α : N → M be a completely positive, normal, unital map and ω a faithful normal state of M. Then there
exists an N − M bimodule Hα , with a cyclic vector ξα ∈ H and left and right actions ℓα and rα , such that

(ξα, ℓα(n)ξα) = ωout(n) , (ξα, rα(m)ξα) = ωin(m) , (3)

with ωin ≡ ω, ωout ≡ ωin · α. The pair (Hα, ξα) with this property is unique up to unitary equivalence.
Conversely, given anN −M bimoduleHwith a cyclic vector ξ ∈ H, with ω = (ξ, r(·)ξ ) faithful state of M, there is a unique

completely positive, unital, normal map α : N → M such that (H, ξ ) = (Hα, ξα), the cyclic bimodule associated with α by ω.

Proof. For the construction of (Hα, ξα), let M act on a Hilbert space with cyclic and separating vector ξ such that ω(m) =

(ξ,mξ ). The GNS representation of the algebraic tensor product N ⊙ Mo (Mo the opposite algebra of M), associated with
the state determined by

n ⊙ mo
↦→ (ξ, α(n)JMm∗JMξ ) (4)

gives (Hα, ξα), see [11].
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