Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/geomphys

On the asymptotically Poincaré-Einstein 4-manifolds with harmonic curvature

Xue Hu

Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou, 510632, PR China

HIGHLIGHTS

- We investigate the AH mass of an APE 4-manifold with harmonic curvature.
- We prove a rigidity of complete non-compact 4-manifold with harmonic curvature and non-positive scalar curvature.
- We prove a rigidity of complete non-compact Einstein 4-manifold with non-positive scalar curvature.
- We prove a rigidity of an APE 4-manifold with harmonic curvature. The bound of the L²-norm of the curvature is a highlight.

ARTICLE INFO

Article history: Received 10 November 2017 Accepted 10 February 2018 Available online 16 February 2018

MSC: primary 53C25 53C24

Keywords: Asymptotically Poincaré-Einstein manifold Harmonic curvature Mass aspect tensor Rigidity

ABSTRACT

In this paper, we discuss the mass aspect tensor and the rigidity of an asymptotically Poincaré-Einstein (APE) 4-manifold with harmonic curvature. We prove that the trace-free part of the mass aspect tensor of an APE 4-manifold with harmonic curvature and normalized Einstein conformal infinity is zero. As to the rigidity, we first show that a complete noncompact Riemannian 4-manifold with harmonic curvature and positive Yamabe constant as well as a L^2 -pinching condition is Einstein. As an application, we then obtain that an APE 4-manifold with harmonic curvature and positive Yamabe constant is isometric to the hyperbolic space provided that the L^2 -norm of the traceless Ricci tensor or the Weyl tensor is small enough and the conformal infinity is a standard round 3-sphere.

1. Introduction

Poincaré-Einstein (PE) manifolds have been deeply investigated recently because of the so called AdS/CFT correspondence proposed in the theory of quantum gravity in theoretical physics. Since an asymptotically Poincaré-Einstein (APE) manifold and a Riemannian manifold with harmonic curvature are both a kind of generalization of a PE manifold, we wonder whether an APE manifold with harmonic curvature is Einstein. In this paper, we mainly answer this question and investigate the mass aspect tensor and the rigidity of an APE 4-manifold with harmonic curvature.

Before considering the APE Riemannian manifold, we first give some basic materials about conformally compact manifold. Suppose that M^n can be realized as the interior of a smooth compact manifold \overline{M}^n with boundary $\partial \overline{M}$. A defining function τ for the boundary $\partial \overline{M}$ is a smooth function on \overline{M}^n such that $\tau > 0$ in M^n ; $\tau = 0$ on $\partial \overline{M}$; $d\tau \neq 0$ on $\partial \overline{M}$. We refer to $\partial \overline{M}$ as the boundary-at-infinity of M^n and denote it by $\partial_{\infty} M$.

A complete noncompact Riemannian metric g on M^n is said to be $C^{k,\mu}$ conformally compact if the compactified metric $\bar{g} = \tau^2 g$ extends to be a $C^{k,\mu}$ Riemannian metric on \bar{M}^n . If in addition, $|d\tau|^2_{\tau^2 g} = 1$ on $\partial_{\infty} M$, then (M^n, g) is called $C^{k,\mu}$ asymptotically hyperbolic (AH).

https://doi.org/10.1016/j.geomphys.2018.02.008 0393-0440/© 2018 Elsevier B.V. All rights reserved.

E-mail address: thuxue@jnu.edu.cn.

The metric $\bar{g} = \tau^2 g$ induces a metric \hat{g} on the boundary $\partial_{\infty} M$, and the metric g induces a conformal class of metric $[\hat{g}]$ on the boundary $\partial_{\infty}M$ when defining functions vary. The conformal boundary manifold $(\partial_{\infty}M, [\hat{g}])$ is called the conformal infinity of the conformally compact manifold (M^n, g) .

Given a C^1 AH metric g and a representative \hat{g} in $[\hat{g}]$ on the conformal boundary $\partial_{\infty} M$, there is a uniquely determined defining function *r* such that $|dr|_{r^{2}g}^{2} \equiv 1$ in a neighborhood of the boundary. With this choice of *r*, in a collar neighborhood $[0, \epsilon) \times \partial_{\infty} M \subset M^{n}$ for some $\epsilon > 0$, *g* takes the geodesic normal form

$$g = r^{-2} \left(dr^2 + g_r \right), \tag{1}$$

where g_r is a curve of metrics on $\partial_{\infty}M$ with $g_r|_{r=0} = \hat{g}$. Such defining function r is called the geodesic defining function associated with \hat{g} .

Since the sectional curvatures of an AH metric approach -1 as $r \rightarrow 0$, the Ricci curvature will approach -(n-1)g at infinity. Following [1,2], we now turn our attention to the AH manifolds that have Ricci curvature sufficiently pinched near infinity.

Definition 1.1. An AH metric g on M^n is called Poincaré-Einstein (PE) if E(g) := Ric(g) + (n-1)g vanishes identically. It is called asymptotically Poincaré-Einstein (APE) if $|E|_g = O(r^n)$.

Let (M^n, g) be an APE manifold and $g = r^{-2} (dr^2 + g_r)$ with $g_r|_{r=0} = \hat{g}$. Assume that g_r is sufficiently regular that its asymptotical expansion may be calculated by the APE condition. Let E_{00} denote $E\left(\frac{\partial}{\partial r}, \frac{\partial}{\partial r}\right)$ and E^{\perp} denote the projection of E orthogonal to $\frac{\partial}{\partial r}$. A straightforward calculation shows that

$$E_{00} = -\frac{1}{2}tr_{g_r}g_r'' + \frac{1}{2r}tr_{g_r}g_r' + \frac{1}{4}|g_r'|_{g_r}^2$$
⁽²⁾

and

$$E^{\perp} = Ric(g_r) - \frac{1}{2}g_r'' + \frac{n-2}{2r}g_r' + \frac{1}{2r}g_r tr_{g_r}g_r' + \frac{1}{2}g_r' \cdot g_r^{-1} \cdot g_r' - \frac{1}{4}g_r' tr_{g_r}g_r',$$
(3)

where ' denotes $\frac{\partial}{\partial r}$ and $g'_r \cdot g_r^{-1} \cdot g'_r$ denotes the tensor with components $(g_r)'_{ik}(g_r)^{kl}(g_r)'_{lj}$. By similar computation as that in [3], Bahuaud, Mazzeo and Woolgar showed in [1, Proposition 2.2] that for an APE metric g, the expansion of g_r has the following form:

$$g_r = \hat{g} + g^{(2)}r^2 + (\text{even powers of } r) + g^{(n-1)}r^{n-1} + O(r^n)$$
(4)

when *n* is even: and

$$g_r = \hat{g} + g^{(2)}r^2 + (\text{even powers of } r) + \left(g^{(n-1)} + \tilde{g}^{(n-1)}\log r\right)r^{n-1} + O\left(r^n\log r\right)$$
(5)

when *n* is odd, where

(1) $g^{(2k)}$ are determined by \hat{g} for 2k < n-1 and $-g^{(2)}$ is the Schouten tensor $P(\hat{g})$ of \hat{g} for $n \ge 3$, i.e.

$$g^{(2)} = -P(\hat{g}) = -\frac{1}{n-2} \left(Ric(\hat{g}) - \frac{R(\hat{g})}{2(n-1)}\hat{g} \right)$$

- (2) when *n* is even, $g^{(n-1)}$ is undetermined but $tr_{\hat{g}}g^{(n-1)} = 0$; (3) when *n* is odd, the ambient obstruction tensor $\tilde{g}^{(n-1)}$ is determined by \hat{g} and $tr_{\hat{g}}\tilde{g}^{(n-1)} = 0$;
- (4) when n is odd, $tr_{\delta}g^{(n-1)}$ is determined by the prior coefficients, but the trace-free part of $g^{(n-1)}$ is undetermined.

Notice that when n is odd, g_r will always have an expansion involving log r. But as the ambient obstruction tensor $\tilde{g}^{(n-1)}$ is determined by \hat{g} , if we choose \hat{g} carefully, for example, we choose \hat{g} to be Einstein, then we will have $\tilde{g}^{(n-1)} = 0$. We consider in this paper a class of APE manifolds which have special conformal infinities, that is, the representative metric \hat{g} is Einstein, normalized such that $Ric(\hat{g}) = \lambda (n-2)\hat{g}$ with $\lambda \in \{-1, 0, 1\}$. We call such $(\partial_{\infty}M, [\hat{g}])$ the normalized Einstein conformal infinity.

We will also need the following notion of AH mass for an APE Riemannian manifold developed in [2].

Lemma 1.2 ([2, Lemma 2.2 and Definition 2.5]). Let (M^n, g) be an APE Riemannian manifold with normalized Einstein conformal infinity $(\partial_{\infty} M, [\hat{g}])$, then g has the form

$$g = r^{-2} \left(dr^2 + \left(1 - \frac{\lambda}{4} r^2 \right)^2 \hat{g} + \frac{1}{n-1} r^{n-1} \theta + \frac{1}{n} r^n \kappa + O\left(r^{n+1}\right) \right)$$
(6)

where θ is the Neumann data for g with $tr_{g}\theta = 0$ and κ is the mass aspect tensor for g. Moreover, $tr_{g}\kappa$ is the mass aspect function and $\int_{\partial \sim M} tr_{\hat{g}} \kappa dv_{\hat{g}}$ is the mass for g.

Download English Version:

https://daneshyari.com/en/article/8255564

Download Persian Version:

https://daneshyari.com/article/8255564

Daneshyari.com