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a b s t r a c t

The important unsolved problem in theory of integrable systems is to find conditions
guaranteeing existence of a Lax representation for a given pde. The exotic cohomology of
the symmetry algebras opens a way to formulate such conditions in internal terms of the
pdes under the study. In this paper we consider certain examples of infinite-dimensional
Lie algebras with nontrivial second exotic cohomology groups and show that the Maurer–
Cartan formsof the associated extensions of these Lie algebras generate Lax representations
for integrable systems, both known and new ones.
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1. Introduction

The existence of a Lax representation is the key property of integrable equations, [1,2], and a starting setting for a number
of techniques to study nonlinear partial differential equations (pdes) such as Bäcklund transformations, nonlocal symmetries
and conservation laws, recursion operators, Darboux transformations, etc. Although these structures are of great significance
in the theory of integrable pdes, up to now the problem of finding conditions for a pde to admit a Lax representation is open.
In [3] we propose an approach for solving this problem in internal terms of the pde under the study. We show there that for
some pdes their Lax representations can be derived from the second exotic1 cohomology of the symmetry pseudogroups
of the pdes. The main advantage of this approach is that it allows one to get rid of apriori assumptions about the defining
equations of the Lax representation. In this paper we generalize the constructions of [3]. We consider a deformation of
the tensor product of the Lie algebra of vector fields on a line and the algebra of truncated polynomials as well as certain
extensions of this deformation and show that at some values of the deformation parameter the Maurer–Cartan forms of the
obtained Lie algebras produce Lax representations for some known as well as some new integrable systems.
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1 Unlike in [3], in this paperwe follow [4] and use the term ‘‘exotic cohomology’’ instead of ‘‘deformed cohomology’’, since herewe discuss deformations

of Lie algebras which are not related to ‘‘deformed cohomology’’ in the sense of [3].
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2. Preliminaries

All considerations in this paper are local. All functions are assumed to be real-analytic.

2.1. Coverings of PDEs

The coherent geometric formulation of Lax representations, Wahlquist–Estabrook prolongation structures, Bäcklund
transformations, recursion operators, nonlocal symmetries, and nonlocal conservation laws is based on the concept of
differential covering of a pde [5,6]. In this subsection we closely follow [7,8] to present the basic notions of the theory of
differential coverings.

Let π : Rn
× Rm

→ Rn, π : (x1, . . . , xn, u1, . . . , um) ↦→ (x1, . . . , xn) be a trivial bundle, and J∞(π ) be the bundle of
its jets of the infinite order. The local coordinates on J∞(π ) are (xi, uα, uα

I ), where I = (i1, . . . , in) is a multi-index, and for
every local section f : Rn

→ Rn
× Rm of π the corresponding infinite jet j∞(f ) is a section j∞(f ) : Rn

→ J∞(π ) such that
uα
I (j∞(f )) =

∂#I f α

∂xI
=

∂ i1+···+in f α

(∂x1)i1 ...(∂xn)in
. We put uα

= uα
(0,...,0). Also, in the case of m = 1 and, e.g., n = 4 we denote x1 = t , x2 = x,

x3 = y, x4 = z, and u1
(i,j,k,l) = ut...tx...xy...yz...z with i times t , j times x, k times y, and l times z.

The vector fields

Dxk =
∂

∂xk
+

∑
#I≥0

m∑
α=1

uα
I+1k

∂

∂uα
I
, k ∈ {1, . . . , n},

with I+1k = (i1, . . . , ik, . . . , in)+1k = (i1, . . . , ik +1, . . . , in) are referred to as total derivatives. They commute everywhere
on J∞(π ): [Dxi ,Dxj ] = 0.

A system of pdes Fr (xi, uα
I ) = 0, #I ≤ s, r ∈ {1, . . . , σ }, of the order s ≥ 1 with σ ≥ 1 defines the submanifold

E = {(xi, uα
I ) ∈ J∞(π ) | DK (Fr (xi, uα

I )) = 0, #K ≥ 0} in J∞(π ).
DenoteW = R∞ with coordinateswa, a ∈ N∪{0}. Locally, an (infinite-dimensional) differential covering over E is a trivial

bundle τ : J∞(π ) × W → J∞(π ) equipped with the extended total derivatives

D̃xk = Dxk +

∞∑
a=0

T a
k (x

i, uα
I , w

b)
∂

∂wa (1)

such that [D̃xi , D̃xj ] = 0 for all i ̸= jwhenever (xi, uα
I ) ∈ E. For the partial derivatives ofwa which are defined aswa

xk
= D̃xk (wa)

we have the system of covering equations

wa
xk = T a

k (x
i, uα

I , w
b).

This over-determined system of pdes is compatible whenever (xi, uα
I ) ∈ E.

Dually the covering with extended total derivatives (1) is defined by the differential ideal generated by the Wahlquist–
Estabrook forms, [2, p. 81],

ϖ a
= dwa

−

n∑
k=1

T a
k (x

i, uα
I , w

b) dxk.

This ideal is integrable on E, that is,

dϖ a
≡

∑
b

ηa
b ∧ ϖ b mod ⟨ϑI⟩,

where ηa
b are some 1-forms on E × W and ϑI = (duα

I −
∑

ku
α
I+1k

dxk)|E.

2.2. Exotic cohomology

Let g be a Lie algebra overR and ρ : g → End(V ) be its representation. Let Ck(g, V ) = Hom(Λk(g), V ), k ≥ 1, be the space
of all k-linear skew-symmetric mappings from g to V . Then the Chevalley–Eilenberg differential complex

V = C0(g, V )
d

−→ C1(g, V )
d

−→ · · ·
d

−→ Ck(g, V )
d

−→ Ck+1(g, V )
d

−→ · · ·

is generated by the differential defined by the formula

dθ (X1, . . . , Xk+1) =

k+1∑
q=1

(−1)q+1ρ(Xq) (θ (X1, . . . , X̂q, . . . , Xk+1))

+

∑
1≤p<q≤k+1

(−1)p+qθ ([Xp, Xq], X1, . . . , X̂p, . . . , X̂q, . . . , Xk+1). (2)
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