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a b s t r a c t

SupposeM is a compact Riemannianmanifold and p ∈ M an arbitrary point.We employ es-
timates on the volume growth around p to prove that the only conformal compactification
ofM \ {p} isM itself.
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1. Introduction

Though this article is primarily concerned with conformal differential geometry in dimension ≥ 3, the phenomenon we
wish to describe also occurs in dimension 2 as follows.

Theorem1. Suppose that M is a compact connected Riemann surface and p ∈ M. Suppose that N is a compact connected Riemann
surface and U ⊂ N an open subset such that U ∼= M\{p} as Riemann surfaces. Then this isomorphism extends to N ∼= M.

Statedmore informally, there is no difference between the ‘punctured Riemann surface’M\{p} and the ‘marked Riemann
surface’ (M, p). In fact, although we have stated the theorem in terms of compact Riemann surfaces, the result itself is
local:

(1)

In this picture the punctured open disc is assumed to be conformally isomorphic to the open set U (but nothing is supposed
concerning the boundary ∂U of U in N). We may conclude that N must be, in fact, be the disc and U ↪→ N the punctured
disc, tautologically included. For simplicity, however, the results in this article will be formulated for compact manifolds,
their local counterparts being left to the reader.

By a conformal manifold we shall mean a smooth manifold equipped with an equivalence class of Riemannian metrics
[gab] where the notion of equivalence is that ĝab = Ω2gab for some positive smooth function Ω .
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Theorem 2. Suppose M is a compact connected conformal manifold and p ∈ M. Suppose N is a compact connected conformal
manifold and U ⊂ N an open subset such that U ∼= M\{p} as conformal manifolds. Then this isomorphism extends to N ∼= M.

Since an oriented conformal structure in 2 dimensions is the same as a complex structure, Theorem 2 generalises
Theorem 1. It is well known, however, that conformal geometry in dimensions ≥ 3 enjoys a greater rigidity than in 2
dimensions and so one expects a different proof. Such proofs of Theorem 2 (and beyond) can be found in [1]. In this article,
however, we shall prove Theorem 2 by a method that also works (but much more easily so) in dimension 2.

Remark. In fact, we learned from Ben Warhurst that our proof in 2 dimensions closely follows the notion and calculation
of extremal length, due to Ahlfors and Beurling, who show [2, Lemma 5] that the extremal length of the family of curves
winding once around a 2-dimensional puncture is zero, whereas the same family viewed on N ̸∼= M would have strictly
positive extremal length. The difficulty in extending this reasoning to higher dimensions lies in our choice of curves used
to ‘trap’ the puncture. In Lemma 1 our choice of curves is itself based on the conformal factor and this idea seems to be
new. Other than this, our proof is elementary, using only the Hölder inequality in higher dimensions as a replacement for
Cauchy–Schwarz in two dimensions. Warhurst has constructed a proof in higher dimensions using, instead, the family of
curves passing through the puncture. The key to his alternative proof is the fact that compact Riemannian n-manifolds are
‘n-Loewner,’ see for example [3].

2. Puncture repair in 2 dimensions

Proof of Theorem 1. With reference to picture (1), introducing polar coördinates (r, θ ) on the disc and hence on U , we are
confronted by a smooth positive functionΩ(r, θ ) so that, if the ηab denotes the standardmetric dr2 + r2dθ2 on the disc, then
the metric η̂ab = Ω2ηab extends to N . If ∂U ⊂ N contains two or more points, then the concentric curves {r = ϵ} as ϵ ↓ 0
have length bounded away from zero in the metric η̂ab. In other words, for some ϵ > 0 and ℓ > 0, we have∫ 2π

0
Ω(r, θ ) r dθ ≥ ℓ, ∀ 0 < r < ϵ.

By the Cauchy–Schwarz inequality, for any fixed r ,(∫ 2π

0
Ω(r, θ ) dθ

)2

≤ 2π
∫ 2π

0
Ω2(r, θ ) dθ

and it follows that∫ ϵ

0

∫ 2π

0
Ω2 dθ r dr ≥

∫ ϵ

0

1
2π

(∫ 2π

0
Ω dθ

)2

r dr ≥
1
2π

∫ ϵ

0

ℓ2

r
dr = ∞.

However, the integral on the left is the area of {0 < r < ϵ} ⊆ U in the metric η̂ab, which must be finite if η̂ab is to extend
smoothly to N . □

3. Puncture repair in Euclidean n-space

In 2 dimensions, the local existence of isothermal coördinates implies that it is sufficient to repair only the unit disc in
R2 with its standard metric ηab. Such a normalisation is unavailable in higher dimensions.

Proof of Theorem 2 in flat space. With reference to (1), now viewed as a picture in n dimensions, we shall suppose that
the object on the left is a punctured ball in Rn with its standard Euclidean metric and aim to conclude, just as we did in case
n = 2, that ∂U ⊂ N is a single point. To do this, we replace polar coördinates by spherical coördinates

R>0 × Σ ∋ (r, x) ↦→ rx ∈ Rn
\{0},

where

Σ = {x ∈ Rn
| ∥x∥ = 1} ↪→ Rn

\{0}

is the unit (n− 1)-sphere and investigate the behaviour of a smooth positive function Ω = Ω(r, x) defined for r sufficiently
small and having the property that the metric η̂ab = Ω2ηab extends to N . If ∂U ⊂ N contains two or more points, then the
concentric hypersurfaces {r = ϵ} as ϵ ↓ 0 have diameter bounded away from zero in the metric η̂ab. In other words, for
some ϵ > 0 and ℓ > 0, we have

∀ 0 < r < ϵ, there are α, β ∈ Σ s.t.
∫ β

α

Ω(r, x) r ≥ ℓ,

where the integral is along any path from α to β on the unit sphere Σ (with respect to the standard round metric on Σ).
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