Almost complex structures that are harmonic maps

Johann Davidov ${ }^{\text {a,* }}$, Absar Ul Haq ${ }^{\text {b }}$, Oleg Mushkarov ${ }^{\text {a,c }}$
${ }^{\text {a }}$ Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.8, 1113 Sofia, Bulgaria
${ }^{\mathrm{b}}$ Department of Mathematics, University of Management and Technology Lahore, Sialkot Campus, Pakistan
c South-West University "Neofit Rilski", 2700 Blagoevgrad, Bulgaria

ARTICLE INFO

Article history:

Received 24 January 2017
Received in revised form 3 August 2017
Accepted 26 September 2017
Available online 24 October 2017

MSC:

primary 53C43
secondary 58E20
53C28

Keywords

Almost complex structures
Twistor spaces
Harmonic maps

Abstract

We find geometric conditions on a four-dimensional almost Hermitian manifold under which the almost complex structure is a harmonic map or a minimal isometric imbedding of the manifold into its twistor space.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recall that an almost complex structure on a Riemannian manifold (M, g) is called almost Hermitian if it is g-orthogonal. If a Riemannian manifold admits an almost Hermitian structure J, it has many such structures. One way to see this is to consider the twistor bundle $\pi: \mathcal{Z} \rightarrow M$ whose fibre at a point $p \in M$ consists of all g-orthogonal complex structures $I_{p}: T_{p} M \rightarrow T_{p} M\left(I_{p}^{2}=-I d\right)$ on the tangent space of M at p yielding the same orientation as J_{p}. The fibre is the compact Hermitian symmetric space $S O(2 n) / U(n)$ and its standard metric $-\frac{1}{2}$ Trace $I_{1} \circ I_{2}$ is Kähler-Einstein. The twistor space admits a natural Riemannian metric h such that the projection map $\pi:(\mathcal{Z}, h) \rightarrow(M, g)$ is a Riemannian submersion with totally geodesic fibres. Consider J as a section of the bundle $\pi: \mathcal{Z} \rightarrow M$ and take a section V with compact support K of the bundle $J^{*} \mathcal{V} \rightarrow M$, the pull-back under J of the vertical bundle $\mathcal{V} \rightarrow \mathcal{Z}$. There exists $\varepsilon>0$ such that, for every point I of the compact set $J(K)$, the exponential map $\exp _{I}$ is a diffeomorphism of the ε-ball in $T_{I} \mathcal{Z}$. The function $\|V\|_{h}$ is bounded on M, so there exists a number $\varepsilon^{\prime}>0$ such that $\|t V(p)\|_{h}<\varepsilon$ for every $p \in M$ and $t \in\left(-\varepsilon^{\prime}, \varepsilon^{\prime}\right)$. Set $J_{t}(p)=\exp _{J(p)}[t V(p)]$ for $p \in M$ and $t \in\left(-\varepsilon^{\prime}, \varepsilon^{\prime}\right)$. Then J_{t} is a section of \mathcal{Z}, i.e. an almost Hermitian structure on (M, g) (such that $J_{t}=J$ on $M \backslash K$).

Thus it is natural to seek for "reasonable" criteria that distinguish some of the almost Hermitian structures on a given Riemannian manifold (cf., for example, [1-4]). Motivated by the harmonic map theory, C. Wood [2,3] has suggested to consider as "optimal" those almost Hermitian structures $J:(M, g) \rightarrow(\mathcal{Z}, h)$ that are critical points of the energy functional under variations through sections of \mathcal{Z}, i.e. that are harmonic sections of the twistor bundle. In general, these critical points are not harmonic maps, but, by analogy, they are referred to as "harmonic almost complex structures" in [2,3]. It is more appropriate in the context of this article to call such structures "harmonic sections", a term used also in [2].

[^0]The almost Hermitian structures that are critical points of the energy functional under variations through all maps $M \rightarrow \mathcal{Z}$ are genuine harmonic maps and the purpose of this paper is to find geometric conditions on a four-dimensional almost Hermitian manifold (M, g, J) under which the almost complex structure J is a harmonic map of (M, g) into (\mathcal{Z}, h). We also find conditions for minimality of the submanifold $J(M)$ of the twistor space. As is well-known, in dimension four, there are three basic classes in the Gray-Hervella classification [5] of almost Hermitian structures-Hermitian, almost Kähler (symplectic) and Kähler structures. If (g, J) is Kähler, the map $J:(M, g) \rightarrow(\mathcal{Z}, h)$ is a totally geodesic isometric imbedding. In the case of a Hermitian structure, we express the conditions for harmonicity and minimality of J in terms of the Lee form, the Ricci and star-Ricci tensors of (M, g, J), while for an almost Kähler structure the conditions are in terms of the Ricci, star-Ricci and Nijenhuis tensors. Several examples illustrating these results are discussed in the last section of the paper, among them a Hermitian structure that is a harmonic section of the twistor bundle and a minimal isometric imbedding in it but not a harmonic map.

2. Preliminaries

Let (M, g) be an oriented Riemannian manifold of dimension four. The metric g induces a metric on the bundle of twovectors $\pi: \Lambda^{2} T M \rightarrow M$ by the formula

$$
g\left(v_{1} \wedge v_{2}, v_{3} \wedge v_{4}\right)=\frac{1}{2} \operatorname{det}\left[g\left(v_{i}, v_{j}\right)\right]
$$

The Levi-Civita connection of (M, g) determines a connection on the bundle $\Lambda^{2} T M$, both denoted by ∇, and the corresponding curvatures are related by

$$
R(X \wedge Y)(Z \wedge T)=R(X, Y) Z \wedge T+Z \wedge R(X, Y) T
$$

for $X, Y, Z, T \in T M$. The curvature operator \mathcal{R} is the self-adjoint endomorphism of $\Lambda^{2} T M$ defined by

$$
g(\mathcal{R}(X \wedge Y), Z \wedge T)=g(R(X, Y) Z, T)
$$

Let us note that we adopt the following definition for the curvature tensor $R: R(X, Y)=\nabla_{[X, Y]}-\left[\nabla_{X}, \nabla_{Y}\right]$.
The Hodge star operator defines an endomorphism $*$ of $\Lambda^{2} T M$ with $*^{2}=I d$. Hence we have the orthogonal decomposition

$$
\Lambda^{2} T M=\Lambda_{-}^{2} T M \oplus \Lambda_{+}^{2} T M
$$

where $\Lambda_{ \pm}^{2} T M$ are the subbundles of $\Lambda^{2} T M$ corresponding to the (± 1)-eigenvalues of the operator $*$.
Let ($E_{1}, E_{2}, E_{3}, E_{4}$) be a local oriented orthonormal frame of TM. Set

$$
\begin{equation*}
s_{1}=E_{1} \wedge E_{2}+E_{3} \wedge E_{4}, \quad s_{2}=E_{1} \wedge E_{3}+E_{4} \wedge E_{2}, \quad s_{3}=E_{1} \wedge E_{4}+E_{2} \wedge E_{3} \tag{1}
\end{equation*}
$$

Then (s_{1}, s_{2}, s_{3}) is a local orthonormal frame of $\Lambda_{+}^{2} T M$ defining an orientation on $\Lambda_{+}^{2} T M$, which does not depend on the choice of the frame ($E_{1}, E_{2}, E_{3}, E_{4}$).

For every $a \in \Lambda^{2} T M$, define a skew-symmetric endomorphism K_{a} of $T_{\pi(a)} M$ by

$$
\begin{equation*}
g\left(K_{a} X, Y\right)=2 g(a, X \wedge Y), \quad X, Y \in T_{\pi(a)} M \tag{2}
\end{equation*}
$$

Note that, denoting by G the standard metric $-\frac{1}{2}$ Trace $P Q$ on the space of skew-symmetric endomorphisms, we have $G\left(K_{a}, K_{b}\right)=2 g(a, b)$ for $a, b \in \Lambda^{2} T M$. If $\sigma \in \Lambda_{+}^{2} T M$ is a unit vector, then K_{σ} is a complex structure on the vector space $T_{\pi(\sigma)} M$ compatible with the metric and the orientation of M. Conversely, the 2-vector σ dual to one half of the fundamental 2 -form of such a complex structure is a unit vector in $\Lambda_{+}^{2} T M$. Thus the unit sphere subbundle \mathcal{Z} of $\Lambda_{+}^{2} T M$ parametrizes the complex structures on the tangent spaces of M compatible with its metric and orientation. This subbundle is called the twistor space of M.

The Levi-Civita connection ∇ of M preserves the bundles $\Lambda_{ \pm}^{2} T M$, so it induces a metric connection on each of them denoted again by ∇. The horizontal distribution of $\Lambda_{+}^{2} T M$ with respect to ∇ is tangent to the twistor space \mathcal{Z}. Thus we have the decomposition $T \mathcal{Z}=\mathcal{H} \oplus \mathcal{V}$ of the tangent bundle of \mathcal{Z} into horizontal and vertical components. The vertical space $\mathcal{V}_{\tau}=\left\{V \in T_{\tau} \mathcal{Z}: \pi_{*} V=0\right\}$ at a point $\tau \in \mathcal{Z}$ is the tangent space to the fibre of \mathcal{Z} through τ. Considering $T_{\tau} \mathcal{Z}$ as a subspace of $T_{\tau}\left(\Lambda_{+}^{2} T M\right)$ (as we shall always do), \mathcal{V}_{τ} is the orthogonal complement of τ in $\Lambda_{+}^{2} T_{\pi(\tau)} M$. The map $V \ni \mathcal{V}_{\tau} \rightarrow K_{V}$ gives an identification of the vertical space with the space of skew-symmetric endomorphisms of $T_{\pi(\tau)} M$ that anti-commute with K_{τ}. Let s be a local section of \mathcal{Z} such that $s(p)=\tau$ where $p=\pi(\tau)$. Considering s as a section of $\Lambda_{+}^{2} T M$, we have $\nabla_{X} s \in \mathcal{V}_{\tau}$ for every $X \in T_{p} M$ since s has a constant length. Moreover, $X_{\tau}^{h}=s_{*} X-\nabla_{X} s$ is the horizontal lift of X at τ.

Denote by \times the usual vector cross product on the oriented 3-dimensional vector space $\Lambda_{+}^{2} T_{p} M, p \in M$, endowed with the metric g. Then it is easy to check that

$$
\begin{equation*}
g(R(a) b, c)=g(\mathcal{R}(b \times c), a) \tag{3}
\end{equation*}
$$

for $a \in \Lambda^{2} T_{p} M, b, c \in \Lambda_{+}^{2} T_{p} M$. It is also easy to show that for every $a, b \in \Lambda_{+}^{2} T_{p} M$

$$
\begin{equation*}
K_{a} \circ K_{b}=-g(a, b) I d+K_{a \times b} \tag{4}
\end{equation*}
$$

https://daneshyari.com/en/article/8255738

Download Persian Version:

https://daneshyari.com/article/8255738

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jtd@math.bas.bg (J. Davidov), absar.ulhaq@skt.umt.edu.pk (A.U. Haq), muskarov@math.bas.bg (O. Mushkarov).

