Contents lists available at ScienceDirect

## Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/geomphys

prove a commutating reduction theorem.

Hamiltonian systems on quasi-symplectic groupoid reduced spaces are studied. Moreover,

for product quasi-symplectic groupoids, we consider Hamiltonian reduction by stages and

## On quasi-symplectic groupoid reduction

### Hao Ding

Department of Mathematics, Southwest Jiaotong University, West Section, High-tech Zone, Chengdu, Sichuan, 611756, PR China

#### ARTICLE INFO

#### ABSTRACT

Article history: Received 28 January 2017 Received in revised form 13 November 2017 Accepted 23 November 2017 Available online 5 December 2017

MSC: 53D17 53D20 37]15

*Keywords:* Quasi-symplectic groupoids Moment maps Reduction

#### 1. Introduction and main results

Quasi-symplectic groupoids and their moment map theory are introduced by Xu in [1] to unify into a single framework various reduction theories such as Marsden–Weinstein quotients [2], reduction by symplectic groupoids [3], and reduction by Lie group valued moment maps [4].

A quasi-symplectic groupoid ( $\mathcal{G} : G \Rightarrow M, \omega + \Omega$ ) consists of a Lie groupoid  $\mathcal{G} : G \Rightarrow M$  and two differential forms  $\omega \in \Omega^2(M)$  and  $\Omega \in \Omega^3(G)$ , in which  $\omega$  satisfies a weak non-degeneracy condition, and  $\omega + \Omega$  is a cocycle in the de Rham complex of the Lie groupoid  $\mathcal{G} : G \Rightarrow M$ .

Given a quasi-symplectic groupoid  $(\mathcal{G} : \mathcal{G} \Rightarrow M, \omega + \Omega)$  and a Hamiltonian  $\mathcal{G}$ -space  $(X, \omega_X, J : X \to M)$ . Under suitable conditions, for example, if  $m \in M$  is a regular value of J and the isotropic subgroup G(m) acts on  $J^{-1}(m)$  freely and properly, then the quotient space  $J^{-1}(m)/G(m)$  is a smooth manifold endowed naturally with a symplectic form. Moreover, if  $(\mathcal{G}_i : G_i \Rightarrow M_i, \omega_i + \Omega_i)$  are two quasi-symplectic groupoids such that  $(X, \omega_X, J : X \to M_1 \times M_2)$  is a Hamiltonian  $(\mathcal{G}_1 \times \mathcal{G}_2)$ -space, then the quotient space  $\overline{X}_{m_2} := J_2^{-1}(m_2)/G_2(m_2)$  (if is a smooth manifold) is a Hamiltonian  $\mathcal{G}_1$ -space. So we can perform the reduction process again and get a new reduced space  $(\overline{X}_{m_2})_{m_1}$ . It is natural to compare this space to  $\overline{X}_{(m_1,m_2)}$  which is reduced by X under the product groupoid  $\mathcal{G}_1 \times \mathcal{G}_2$ . We will show that these two spaces are symplectically homeomorphic. This result is a groupoid version of "Hamiltonian reduction by stages" [5].

We list here the main results of this paper:

- (1) In Theorem 3.3, for each  $\mathcal{G}$ -invariant smooth function  $F : X \to \mathbb{R}$ , we define on X a unique  $\mathcal{G}$ -invariant vector field  $X_F$  which preserves  $\omega_X$  and  $J : X \to M$ . By using these vector fields, a Poisson structure can be defined on the space  $C^{\infty}(X; \mathbb{R})^{\mathcal{G}}$  of  $\mathcal{G}$ -invariant smooth functions on X.
- (2) In Theorem 3.6, we construct the reduced Hamiltonian systems on reduced spaces.

https://doi.org/10.1016/j.geomphys.2017.11.011 0393-0440/© 2017 Elsevier B.V. All rights reserved.









© 2017 Elsevier B.V. All rights reserved.

E-mail address: dinghao@swjtu.edu.cn.

- (3) The product  $\mathcal{G}_1 \times \mathcal{G}_2$  of two quasi-symplectic groupoids  $\mathcal{G}_1$  and  $\mathcal{G}_2$  is naturally a quasi-symplectic groupoid. Suppose  $(X, \omega_X, J_i : X \to M_i)$  is a Hamiltonian  $\mathcal{G}_i$ -space for each i = 1, 2. Under suitable conditions, in Theorem 4.2, we prove  $(X, \omega_X, J_1 \times J_2)$  is a Hamiltonian  $\mathcal{G}_1 \times \mathcal{G}_2$ -space.
- (4) In Theorem 5.4, we prove a commutating reduction theorem for quasi-symplectic groupoid reduction theory. We show that under a sufficient condition, the reduced space of  $(X, \omega_X)$  by the product  $\mathcal{G}_1 \times \mathcal{G}_2$  is symplectically homeomorphic to the reduced space of  $(X, \omega_X)$  by  $\mathcal{G}_1$  and  $\mathcal{G}_2$  in two stages.

#### 2. Preliminaries

In this section we recall the definition and some basic properties of quasi-symplectic groupoids. All of them can be found in [1].

Let  $G : G \Rightarrow M$  be a Lie groupoid with source map  $s : G \rightarrow M$ , target map  $t : G \rightarrow M$ , multiplication map  $m : G \times_M G \rightarrow G, (g, h) \mapsto gh$  if  $g, h \in G$  with t(g) = s(h), and unit map  $\epsilon : M \rightarrow G$ . See [6] and [7] for the definition and basic properties of Lie groupoids.

**Definition 2.1.** A Lie groupoid  $\mathcal{G} : G \Rightarrow M$  is called a *quasi-symplectic groupoid* if there exists a 3-form  $\Omega$  on M and a 2-form  $\omega$  on G such that

(Q1)  $d\Omega = 0, d\omega = s^*\Omega - t^*\Omega, pr_1^*\omega + pr_2^*\omega = m^*\omega$ . Here,  $pr_i : G \times_M G \to G$  are the natural projections for i = 1, 2;

(Q2) for every  $m \in M$ , the anchor map

 $ds(m): \ker \omega(m) \cap T_m t^{-1}(m) \to \ker \omega(m) \cap T_m M$ 

is an isomorphism. Here we identify M with its image  $\epsilon(M)$  in G.

**Remark 2.2.** The second condition that each anchor map ds(m): ker  $\omega(m) \cap T_m t^{-1}(m) \rightarrow \ker \omega(m) \cap T_m M$  is an isomorphism is equivalent to ([1, Proposition 2.7])

each such anchor map is injective, and  $\dim G = 2 \dim M$ ,

and hence is also equivalent to

(Q2') ker  $ds(m) \cap ker dt(m) \cap ker \omega(m) = 0$ , and dim  $G = 2 \dim M$ .

Bursztyn–Crainic–Weinstein–Zhu [8] use conditions (Q1) and (Q2') to define the same groupoids under the name twisted presymplectic groupoids.

Let us recall some properties of quasi-symplectic groupoids:

**Lemma 2.3.** Let  $(\mathcal{G} : \mathcal{G} \Rightarrow M, \omega + \Omega)$  be a quasi-symplectic groupoid. Then

- (i) the 2-form  $\omega$  vanishes on M, that is,  $\epsilon^* \omega = 0$ ;
- (ii) for all  $m \in M$ , we have the following decompositions

$$T_m G = T_m t^{-1}(m) \oplus T_m M = T_m s^{-1}(m) \oplus T_m M.$$

**Proof.** The first one is (1) in [1, Proposition 2.3]. The last one is because every tangent vector  $\zeta \in T_m G$  can be written as a sum

 $\zeta = (\zeta - dt(m)\zeta) + dt(m)\zeta \in T_m t^{-1}(m) + T_m M.$ 

The decomposition is clearly a direct sum.  $\Box$ 

**Definition 2.4.** Let  $\mathcal{G} : G \Rightarrow M$  be a Lie groupoid and X a smooth manifold. We say  $\mathcal{G}$  acts on X from the left, or X is a left  $\mathcal{G}$ -space, if there exist smooth maps  $J : X \to M$ , and  $G \times_M X \to X$ ,  $(g, x) \mapsto g \cdot x$ , such that for every  $(g, x) \in G \times_M X$  and every  $h \in G$  with t(h) = s(g),

$$J(g \cdot x) = s(g), \ h(g \cdot x) = (hg) \cdot x, \ \epsilon(J(x)) \cdot x = x.$$

Here,  $G \times_M X = \{(g, x) | t(g) = J(x)\}$  is a smooth submanifold of  $G \times X$ . The smooth map  $J : X \to M$  is called the *moment* map.

**Remark 2.5.** It is well-known (see, e.g. [7, p. 125], in different conventions) that given a left  $\mathcal{G}$ -space  $(X, J : X \to M)$ , we have the translation groupoid  $G \times_M X \Rightarrow X$  whose source map  $s_X : G \times_M X \to X$  is the action  $(g, x) \mapsto g \cdot x$  and whose target map  $t_X : G \times_M X \to X$  is the natural projection  $(g, x) \mapsto x$ .

The action of  $\mathcal{G}$  on X induces an infinitesimal action: Given a point x in X. Write  $m = J(x) \in M$ . Then the  $\mathcal{G}$  action induces a smooth map

 $t^{-1}(m) \to X; \quad g \mapsto g \cdot x,$ 

Download English Version:

# https://daneshyari.com/en/article/8255814

Download Persian Version:

https://daneshyari.com/article/8255814

Daneshyari.com