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This paper presents a new method for solving transient 2D thermo-(poro-) elastic problems
involving blocky systems with singular points and lines of discontinuity. The efficiency and
accuracy of the method arise from using complex variables (CV) and solving a problem in
two separate stages. In the first stage, CV-BEM is combined with the dual reciprocity
method (DRM) for transient heat (liquid) flow to obtain, as a solution, the sum of (i) a
“quasi-steady” part (which may account for discontinuities and singular points) and (ii)
a smooth unsteady part which is a linear combination of smooth radial basis functions
(RBF). These parts, found by integrating a system of ordinary differential equations, are
stored in array, which contains values for each small integration step. From these arrays,
data for selected time instances, which are of interest for thermo-(poro-) elastic analysis,
are used in the second stage to find stresses and stress intensity factors (SIFs) at the
instances of interest. The second stage solution employs CVH-BEM for blocky systems with
discontinuities and singular points: a common code of the CVH-BEM is complemented
with evaluation of two pairs of addends on the right hand side of the boundary integral
equation solved; one of the addends is the sum of well-known terms for the “quasi-steady”
part, while the other is a linear combination of particular solutions corresponding to a stan-
dard RBF. The particular solution needed is found for the Gaussian RBF in a simple analyt-
ical form by using the CV. The efficiency and accuracy of the method are illustrated by
studying stresses and stress intensity factors in a square plate with a crack under thermal
shock applied either to the plate sides, or to the crack surfaces. An interesting and not obvi-
ous effect is revealed: it appears that under thermal shock on the crack surfaces, the flux
intensity factor is actually independent of the crack length for short time instances, which
results in moderate stress intensity factors after the thermal shock.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Transient thermo-(poro-) elastic problems are of interest for many applications (see, e.g. Refs. [1,2]). However, analytical
results exist for only a few configurations (see, e.g. Ref. [3]). Thus, numerical techniques such as the finite element method
(FEM) and the boundary element method (BEM) have been used to obtain solutions. These problems become quite involved
when it is necessary to account for stress singularities at crack tips, corner points and common apexes of grains (e.g. Refs.
[4-10]). In these cases, BEM offers advantages, such as easily accounting for the asymptotic behaviour of fields at singular
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points, and simple modeling of crack growth. This method has been employed in various formulations including a volume
based approach [6], time-domain boundary only formulation [8], sub-region technique for symmetric crack problems [9],
dual BEM for arbitrary cracks [10]. So far, these BEM approaches have been used in real variables applicable to both 2D
and 3D problems. Meanwhile, in 2D, the complex variable (CV) formulations provide further advantages, especially when
solving problems for blocky systems with cracks, pores, inclusions and multi-wedge points (see, e.g. Refs. [11-13]). There-
fore, it is reasonable to extend these advantages to 2D transient problems.

For uncoupled transient problems, the extension is facilitated by the fact that a transient flow problem may be solved
independently of a thermo-(poro-) elastic problem, and the latter includes the transient terms only as specific time-depen-
dent body forces. Consequently, if these forces are found in advance, the common CV-BEM may be employed by using the
superposition of a particular solution accounting for the known “body-forces” and complimentary solution satisfying homo-
geneous equations of the static elasticity. A CV form of such a solution is given in Ref. [14]. Its advantage consists in using
contour-only integrals from the time-dependent potential and the flux. Still, the suggested solution, convenient for smooth
fields in a simply-connected region, becomes rather complicated when applied to discontinuous and singular fields or/and to
a multi-connected region. As described in the following sections, we overcome the shortcoming by representing the tran-
sient potential (temperature or pressure) as the sum of a “quasi-steady” part, which accounts for the stated complicating
factors, and a smooth non-steady part. For the “quasi-steady” part, the extension of the common CV-BIE [11,12] to the steady
thermo-(poro-) elastic problems derived in [15] is available. For the smooth non-steady part, the particular solution of Ref.
[14] may be easily built, especially when this part is given analytically as a linear combination of simple standard functions.
Such representation is available when the dual reciprocity method (DRM) is used for solving a transient flow problem.

The required decomposition of the transient flow fields is suggested and employed in a recent paper by the authors of this
paper [16]. Then, as shown below, by using the Gauss-type radial basis functions (RBF), we obtain a simple particular solu-
tion for displacements and stresses as standard holomorphic functions of the complex coordinate. A particular solution, cor-
responding to a linear combination of the RBF, is a similar linear combination of the standard solutions. Once obtained, it is a
routine technique to include the solution in the common CV-BEM. This drastically simplifies finding not only the boundary
values of tractions and displacements and SIFs at singular points but stresses at arbitrary points within the region, as well.

On the whole, the method of the present paper is as follows. A thermo-(poro-) elastic problem is solved in two separate
stages. The first stage consists of finding the two parts (quasi-steady and smooth unsteady) of a transient heat or fluid trans-
fer problem by using the CV dual reciprocity BEM with the Gauss-type RBF. In this stage, for each small-time step of the inte-
gration over time, we obtain (i) the potential and its normal derivative at the contour, and (ii) the coefficients of a linear
combination of the RBF representing the pseudotemperature. Those data, which correspond to time instances of interest,
are used in the second stage. For each of the selected time instances, the second stage solution employs the complex variable
hypersingular (CVH) BEM, complemented with evaluation of two pairs of addends on the right hand side. One of them is the
sum of well-known terms for the “quasi-steady” part. The other is a linear combination of standard particular solutions cor-
responding to the chosen RBF, with the coefficients found in the first stage. As a result, for each time instance, we find dis-
placements and tractions on the boundary, SIFs at singular points and, if needed, stresses, strains and displacements at
internal points.

The methods used in the two stages define the efficiency and accuracy of the overall method. Under properly chosen
parameters of the DRM, quite accurate and stable results may be efficiently obtained. The efficiency is additionally facilitated
by the complete separation of the stages, which may be performed at different computers at different times. The results of
the first stage may be repeatedly used to find stresses at new time instances and at new points of a region. Actually, the sep-
aration makes the best of uncoupled nature of the problem.

Obviously, separation of the two stages and employing DRM in the first stage to distinguish the quasi-steady and smooth
unsteady parts are also of use when solving 2D and 3D problems in real variables. The problem of finding a standard par-
ticular solution, generated by a standard RBEF, is easily solved in 3D for the RBF of the Gauss-type. We shall not dwell on this
option, but leave it for further work. Rather, we illustrate the efficiency and accuracy of the suggested method by considering
the 2D problems of thermal shock on (i) the sides of a square plate with a straight crack, and (ii) the surfaces of the crack. The
first problem allows us to compare the results with those published in Refs. [7,9,10]. The solution of the second problem
reveals an interesting and not obvious feature: the thermal shock applied to the crack surfaces does not lead to drastic
growth of the SIF at time instances very close to the moment of the shock.

2. Problem formulation

Consider a blocky system with pores, inclusions and lines of discontinuity such as cracks, thin inclusions and contacts of
blocks (Fig. 1). The blocks and inclusions are assumed to be homogenous, linear elastic and isotropic. Denote N the total
number of homogeneous sub-regions (blocks and inclusions). In the Cartesian coordinates x, (k=1, 2, 3 in 3D; k=1, 2 in
2D), the equations of uncoupled thermo-(poro-) elasticity are the diffusion equation
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and the elasticity equations
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