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a b s t r a c t

String-theoretic T-duality can be exploited to simplify some features of the bulk-boundary
correspondence in condensed matter theory. This paper surveys how T-duality links
position and momentum space pictures of that correspondence.
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0. Introduction

This paper reviews howT-duality, borrowed from string theory, simplifies some features of the bulk-boundary correspon-
dence in condensedmatter theory. This application of T-duals was first suggested and exploited byMathai and Thiang [1–3],
and was later extended in joint work with the author [4,5], and for details of the applications we refer to those papers.

After a short account of the historical context for this work in Section 1, Section 2 presents the bulk-boundary
correspondence in position space, whilst Section 3 gives the momentum space perspective more suited to electron band
theory. In Section 4 Cartier’s lattice representation of the canonical commutation relations motivates the appearance of
T-duality. The noncommutative geometric version of this duality is described in more detail in Section 5, and is then shown,
in Section 6, to link the position and momentum versions of the bulk-boundary correspondence. Finally there is a brief
discussion about whether H-flux, important in string theoretic T-duality, might also appear in solid state theory. Two
Appendices cover relevant background aspects of C∗- algebras and noncommutative geometry.

1. Groups, algebras, and topology in solid state physics

Symmetries played a crucial role in the rapid evolution of the fledgling solid state theory into its modern form following
the 1925–6 discovery of a ‘‘new quantum theory’’ by Heisenberg and Schrödinger, [6–8]. Wigner (partly with von Neumann)
showed that symmetries preserving transition probabilities must be described by unitary or antiunitary operators providing
a projective unitary–antiunitary representation, or, in his terminology, a projective corepresentation g ↦→ D(g) of a
symmetry group G, with D(g)D(h) = σ (g, h)D(gh), for some σ (g, h) ∈ C of modulus 1 [9,10]. Time reversal provides a key
example of a symmetry represented antiunitarily. Further exploiting his insights in the 1950s, Wigner classified systems
into three types [11–13]. Dyson later illuminated this result, by observing that the commuting algebra of an irreducible
corepresentation D is, by Schur’s Lemma, a real division algebra, and, by Frobenius’ Theorem, this must be R, C, or H (the
quaternions), [14]. (Wigner’s original method is described in [10, §26].) Dyson showed further that the same argument
applied both to the whole group G, and to the normal subgroup Gu of elements g such that D(g) is unitary, and that,
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surprisingly, the irreducibles for G and Gu could independently have a commuting algebra R, C, or H, giving, in all, nine
possibilities:

RR, RC, RH,
CR, CC, CH,
HR, HC, HH.

Finally, he observed that the central CC possibility could come in two distinct forms, leading to ten classes in all.
It was unclear whether all ten of Dyson’s possibilities could be realised experimentally. However, there were examples

of the three Gaussian matrix ensembles, each also having a chiral version, giving six classes. Then, after three decades of
limited activity, Zirnbauer [15] with Altland [16,17] took the idea up again and found four additional Gaussian ensembles
based on the study of quantum dots. They also made explicit the precise correspondence between the classes of Gaussian
ensembles, and Cartan’s classification of symmetric spaces, [15,17], thus hinting at a geometric as well as a group-theoretic
classification. (Three particular classes of symmetric spaces had appeared in [18, §V], but with the express regret that ‘‘a
more illuminating’’ insight was lacking.)

After that there followed a decade of steadily accelerating activity, with important contributions by numerous authors,
culminating Kitaev’s synthesis, [19], which provided an explicit link to homotopy, K-groups, and symmetric spaces.
(Surveys doing more justice to the numerous crucial papers are to be found in the review of [20], and, from a slightly
different perspective, in [21]. The reviews by Freed and Moore [22], from a topological perspective, and by Prodan and
Schulz-Baldes [23], from an operator algebraic slant, also include further developments since Kitaev’s paper. Other recent
strands are the use of (crystal lattice) equivariant K-theory, [24], and the topological investigation of Fermi arcs in Weyl
semimetals, [25,26].)

The summary of the scheme which emerged can be summarised in the following table (named by Hasan and Kane the
‘‘Altland–Zirnbauer classification’’).

Cartan Θ Ξ Π 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 0 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2
D 0 1 0 Z2 Z 0 0 0 Z 0 Z2
DIII −1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII −1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII −1 −1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 −1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 −1 1 0 0 Z 0 Z2 Z2 Z 0

The first column in this table gives the Cartan symmetric space corresponding to the physical situation, the next indicates
whether time reversal Θ is absent, 0, or present with Θ2

= ±1, as indicated. The third column indicates particle–hole
interchange symmetry withΞ 2

= ±1, or its absence indicated by 0. The fourth column indicates the presence or absence of
chirality with 1 or 0, respectively. It is clear that the first two rows in the table consist simply of repeated copies of the first
pair of entries, with these interchanged between the first and the second row, whilst the other eight rows are obtained from
the third row by cyclic permutations modulo 8. The entries Z2 are for presence or absence of e.g. superconducting phase, Z a
quantised observable such as transverse Hall conductivity in the first row (whilst 0 indicates a default phase of thematerial).
The periodicities 2 and 8 correspond precisely to those of complex and real K-theories, respectively.

To understandwhy K-theory could be relevant to condensedmatter systems one has only to go back to Bloch’s pioneering
study of periodic systems such as crystals, [6]. Let V ∼= Rd denote the group of spatial translations in Rd, V̂ its Pontryagin
dual, L ∼= Zd the subgroup of translations through the crystal lattice, L̂ ∼= Td its dual, and L⊥ = {ξ ∈ V̂ : ξ (ℓ) = 1∀ℓ ∈ L} the
reciprocal lattice. For the rest of this section we concentrate on d = 3. Spatial translations through the crystal lattice must
commute with a Hamiltonian H = P2/(2m) + Φ(Q ) with periodic potential Φ . The action of the lattice group L ∼= Zd of
translations on the Hilbert spaceH ∼= L2(V ) of the quantum system provides a direct integral decompositionH =

∫
⊕H(k)dk

where T (ℓ) acts on H(k) as multiplication by χk(ℓ) for χk ∈ L̂. (Physicists tend to think of k as an element of V̂ which is
periodic with respect to the reciprocal lattice L⊥, as follows from the isomorphism L̂ ∼= V̂/L⊥, and write χk(ℓ) = exp(ik.ℓ),
where the isomorphic vector groups V̂ and V are identified and given the usual Euclidean inner product denoted by a dot.
Sometimes L̂ is considered a Brillouin zone, [27], though the Brillouin zones are usually introduced as subsets of V̂ which
project onto L̂ = V̂/L⊥, and which, together, cover V̂ , up to null sets. The first Brillouin zone consists of elements of V̂ which
are closer to 0 than to any other lattice point λ ∈ L⊥ in the Euclidean norm metric. Bellissard’s noncommutative Brillouin
zone is a crossed product C∗-algebra, which allows for disorder, [28,29].)

General features can be illuminated within each space H(k), where, as Bloch realised, they become much simpler. In
particular, the spectrum of the restriction H(k) of the Hamiltonian to H(k) is discrete, and the ground state energy E0(k) is
nondegenerate, [30, Vol 1, Ch VI.6,7], [31, Ch XIII.16, Th. XIII.89], and a lower bound for the gap E1 − E0 between the ground
state and first excited state energy is known, [32, Th.2.1]. It is also known that H(k) depends continuously on k, giving a
band structure to the energy levels. Since only a finite number of energy levels lie below the Fermi level we can assume that
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