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a b s t r a c t

We study the scalar curvature of spacelike hypersurfaces in the family of cosmological
models known as generalized Robertson–Walker spacetimes, and give several rigidity
results under appropriate mathematical and physical assumptions. On the other hand, we
show that this family of spacetimes provides suitablemodels obeying the null convergence
condition to explain accelerated expanding universes.
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1. Introduction

In this paper we deal with the class of cosmological models called generalized Robertson–Walker (GRW) spacetimes (see
Section 2), which are warped products I ×f F with base an open interval (I,−dt2) and fiber a Riemannian manifold (F , gF )
whose sectional curvature is not assumed to be constant. Thus, our ambient spacetimes widely extend to those that are
classically called Robertson–Walker (RW) spacetimes. Recall that the class of Robertson–Walker spacetimes includes the
usual big-bang cosmological models, the de Sitter spacetime, the steady state spacetime, the Lorentz–Minkowski spacetime
and the Einstein’s static spacetime, among others. Unlikely to these spacetimes, our ambient spacetimes are not necessarily
spatially-homogeneous. Note that being spatially-homogeneous, which is reasonable as a first approximation of the large
scale structure of the universe, could not be appropriate when we consider a more accurate scale. Thus, a GRW spacetime
could be a suitable spacetime to model a universe with inhomogeneous spacelike geometry [1]. On the other hand, small
deformations of themetric on the fiber of classical Robertson–Walker spacetimes fit into the class of GRWspacetimes. There-
fore, GRW spacetimes are useful to analyze if a property of a RW spacetime M is stable, i.e. if it remains true for spacetimes
close to M in a certain topology defined on a suitable family of spacetimes [2]. In fact, a deformation s → g(s)

F
of the metric

of F provides a one parameter family of GRW spacetimes close to M when s approaches to 0. Note that a conformal change
of the metric of a GRW spacetime with a conformal factor which only depends on t , produces a new GRW spacetime. Any
GRW spacetime has a smooth global time function, and so it is stably causal [3, p. 64]. Moreover, if the fiber is complete then
the GRW spacetime is globally hyperbolic [3, Th. 3.66]. On the other hand, if the fiber is compact then it is called spatially
closed. In [4] the behavior of the geodesics of GRW spacetimes is studied.
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We will impose the spacetime to obey the null convergence condition (NCC), which says that the Ricci tensor of the
spacetime is semi-definite positive on every null (light-like) vector. Recall that the exact solutions to the Einstein equations
with cosmological constant, provided that the stress–energy momentum tensor satisfies the weak energy condition, obey
the null convergence condition.

On the other hand, the study of spacelike hypersurfaces in General Relativity is relevant for several questions, as foliations
of spacetimes, change of expansion or contraction phases, the Cauchy problem for Einstein’s equation, etc. (see, for instance,
[5,6]). Moreover, for many problems in General Relativity, including the Positive Mass Theorem and the Penrose Inequality,
knowledge of the entire spacetime is not necessary, rather attention may be focused solely on a spacelike hypersurface,
playing the scalar curvature of this hypersurface an important role [7]. In addition, the choice of a constant mean curvature
(CMC) spacelike hypersurface as initial data has been considered in order to deal with the Cauchy problem for Einstein’s
equation (see [8]).

In the first part of this paper (Section 3) we study the scalar curvature of spacelike hypersurfaces in a GRW spacetime
which obeys the NCC (see Lemma 2). Thus, we obtain a general expression for the scalar curvature of an immersed spacelike
hypersurface in such an ambient space (7), given several estimations when the spacetime obeys the NCC and characterizing
those spacelike hypersurfaces which attain the equality in our estimations (Theorem 3 and Corollary 4). In this setting,
we pay a special attention to the important case of maximal hypersurfaces (Corollaries 5 and 6). As a consequence of our
results, in the particular case when the spacetime is the de Sitter space we provide a characterization of the totally umbilical
spacelike hypersurfaces from a bound of the scalar curvature of the hypersurface (see Theorem 8 and Remark 9). We also
particularize our study to the case of compact CMC hypersurfaces in a GRW spacetime which obeys the NCC, so obtaining
more strong consequences including a Calabi–Bernstein type result (Theorem 11).

On the other hand, in the second part of the paper (Section 4) we apply our mathematical results to the study of a certain
class of cosmological models, specifically GRW spacetimes filledwith perfect fluid. In General Relativity one often employs a
perfect fluid stress–energymomentum tensor to represent the source of the gravitational field. This fluid description is used
where one assumes that the large-scale proprieties of the universe can be studied by assuming a perfect fluid description
of the sources. A review of the specific literature shows that, in fact, almost all the cosmological studies use the perfect
fluid model. We focus on the case where GRW spacetimes satisfying the NCC constitute perfect fluid models adequate to
describe universes at dominant dark energy stage, namely, accelerated expanding universes. We end up particularizing our
study to the family of spatially closed GRW spacetimes. In this setting, we are able to express the total energy on a compact
spacelike hypersurface in terms of its scalar and mean curvatures (Theorems 13 and 15). Finally, in the simplest case of a
3-dimensional GRW spacetime, as a consequence of the Gauss–Bonnet theorem we provide a nice expression of the total
energy in terms of the Euler characteristic of the surface, its mean curvature and its volume (Theorem 16).

2. Preliminaries

Let (F , gF ) be an n(≥2)-dimensional (connected) Riemannian manifold, I an open interval in R endowed with the metric
−dt2, and f a positive smooth function defined on I . Then, the product manifold I × F endowed with the Lorentzian metric

ḡ = −π∗

I
(dt2)+ f (πI )

2 π∗

F
(gF ), (1)

where πI and πF denote the projections onto I and F , respectively, is called a Generalized Robertson–Walker (GRW) spacetime
with fiber (F , gF ), base (I,−dt2) and warping function f . Along this paper we will represent this (n + 1)-dimensional
Lorentzian manifold byM = I ×f F .

The coordinate vector field ∂t := ∂/∂t globally defined on M is (unitary) timelike, and so M is time-orientable. We will
also consider on M the conformal closed timelike vector field K := f (πI) ∂t . From the relationship between the Levi-Civita
connections ofM and those of the base and the fiber [9, Cor. 7.35], it follows that

∇XK = f ′(πI) X

for any X ∈ X(M), where ∇ is the Levi-Civita connection of the Lorentzian metric (1).
We will denote by Ric and S the Ricci tensor and the scalar curvature of M , respectively. It is a straightforward

computation (see [9, Cor. 7.43]) to check that

Ric(X, Y ) = RicF (X F , Y F )+


f ′′

f
+ (n − 1)

f ′2

f 2


g(X F , Y F )− n

f ′′

f
g(X, ∂t)g(Y , ∂t) (2)

for X, Y ∈ X(M), where RicF stands for the Ricci tensor of F . Here X F denotes the lift of the projection of the vector field X
onto F , that is,

X = X F
− g(X, ∂t)∂t . (3)

Recall that a Lorentzian manifold M obeys the Null Convergence Condition (NCC) if its Ricci tensor Ric satisfies
Ric(X, X) ≥ 0, for all null vectors X ∈ X(M). IfM = I ×f F , given a null vector field X ∈ X(M)we get, by decomposing X as
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