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h i g h l i g h t s

• 3D nonlinear wave equation with structural damping is studied.
• It is proved that there exists an exponential attractor of the semigroup generated by the problem.
• It is shown that asymtptic bahavior of solutions is determined by asymptotic behavior of finitely many their Fourier modes.
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a b s t r a c t

The paper is devoted to the study of asymptotic behavior as t → +∞ of solutions of initial boundary
value problem for structurally damped semi-linearwave equation ∂2

t u(x, t)−∆u(x, t)+γ (−∆)θ∂tu(x, t)+
f (u) = g(x), θ ∈ (0, 1), x ∈ Ω, t > 0 under homogeneous Dirichlet’s boundary condition in a bounded
domain Ω ⊂ R3. We proved that the asymptotic behavior as t → ∞ of solutions of this problem is
completely determined by dynamics of the firstN Fouriermodes, whenN is large enough.We also proved
that the semigroup generated by this problem when θ ∈ ( 12 , 1) possesses an exponential attractor.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the present paper we consider the following initial boundary
value problem for structurally damped nonlinear wave equation:

∂2
t u(x, t) − ∆u(x, t) + γ (−∆)θ∂tu(x, t) + f (u) = g(x),
x ∈ Ω, t > 0, (1.1)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (1.2)

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω, (1.3)

where γ > 0, θ ∈ [0, 1) are given numbers, Ω ⊂ R3 is a bounded
domain with sufficiently smooth boundary ∂Ω , u0, u1 are given
initial functions, and g ∈ L2(Ω) is a given source term and f (·) is a
given nonlinear term.
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The nonlinearity f (·) ∈ C1(R) is assumed to satisfy the
conditions

− C1 + a1|s|q ≤ f ′(s) ≤ C2 + a2|s|q, ∀s ∈ R (1.4)

for some constants Ci, ai > 0, i = 1, 2, and q > 0.
The most famous representative of Eq. (1.1) is the so-called

strongly damped nonlinear wave equation (i.e. Eq. (1.1) with
θ = 1):

∂2
t u(x, t) − ∆u(x, t) − γ∆∂tu(x, t) + f (u) = g(x). (1.5)

This equation is used in modeling of a number of physical pro-
cesses. It was used in the study of the motion of viscoelastic
materials, e.g., in modeling the deviation from the equilibrium
configuration of linearly viscoelastic solid with short memory, in
the presence of an external force depending on the displacement.
Equation of the form (1.5) is used in describing evolution of the
current u in a Josephson junction. This kind of equation appears
also in the Frémond theory for phase transitions when micro-
scopic accelerations are taken into account. We refer to [1–3] and
references therein for more details about the physical origins of
Eq. (1.5).
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In [4] Foias and Prodi proved that if the difference between
the first N modes of any two solutions of the 2D Navier–Stokes
equations tends to zero as t → +∞, for N large enough then
the difference between corresponding two solutions also tends
to zero as t → +∞. Later on Ladyzhenskaya [5] proved that
the semigroup generated by the initial boundary value problem
for the 2D Navier–Stokes equations has a global attractor and
if the projections of two trajectories on the attractor on the
subspace of the phase space spanned on first eigenfunctions of
the Stokes operator coincide then the corresponding trajectories
also coincide. These pioneering works inspired further intensive
study of finite-dimensional behavior for Navier–Stokes equations,
reaction diffusion equation, Kuramoto–Sivashinsky equations,
Cahn–Hilliard equation, damped nonlinear Klein–Gordon equa-
tion, damped Kirchhoff equations and other dissipative nonlinear
PDE’s (see, e.g., [4,6–22] and references therein). It was shown
that these problems possess finite-dimensional global attractors,
finite number of determining modes, determining nodes, deter-
mining volume elements and other finite number of determining
parameters.

A number ofworks in this regardwere devoted to initial bound-
ary value problems for Eq. (1.5). Under the natural dissipativity
assumption

lim inf
|r|→∞

f ′(r) ≥ −λ1, (1.6)

and the growth restriction

|f ′(r)| ≤ C(1 + |r|4), ∀r ∈ R (1.7)

it was established that the semigroup generated by this prob-
lem has a finite dimensional global attractor in the phase space
H1

0 (Ω) × L2(Ω) (see, e.g., [3,11,16,23–33] and references therein).
Existence of a global attractor in the phase spaceH2(Ω)∩H1

0 (Ω)×
L2(Ω) was established just under the dissipativity condition (1.6)
(see, e.g., [3]). Asymptotic behavior of solutions of the problem
(1.1)–(1.3) is studied in [34], where the authors proved existence
of a finite-dimensional global attractor of the semigroup associated
to this problem for θ ∈ [

1
2 , 1]when the nonlinear term satisfies the

dissipativity condition and growth condition (1.7).
It is well-known that by using the Galerkin method one can

show that the problem (1.1)–(1.3) has a global weak energy solu-
tion u ∈ L∞(0, T ;H1

0 (Ω) ∩ Lq+2(Ω)) with ∂tu ∈ L∞(0, T ; L2(Ω)) ∩

L2(0, T ;Hθ (Ω)), and utt ∈ L∞(0, T ;H−1(Ω) ⊕ L
q+2
q+1 (Ω)) for each

θ ∈ [0, 1], and any q ≥ 0. Moreover, this problem has an absorbing
ball in the phase space

E := H1
0 (Ω) ∩ Lq+2(Ω) × L2(Ω).

Finally, we would like to note that the uniqueness of the weak
energy solution of the problem (1.1)–(1.3) for this problem under
the condition (1.4)

for q ∈ [0,
8θ

3 − 4θ
) when θ ∈ [

1
2
,
3
4
),

and

for any q ≥ 0 when θ ∈ [
3
4
, 1],

as well as the existence of an exponential attractor for the case
θ = 1 with q ≥ 0 is established in [35]. Moreover, in [26], the
well-posedness and existence of a finite dimensional attractor for
the same problem is established when θ ∈ (0, 1

2 ) and q < 4, and
for the case when θ =

1
2 and q = 4 the existence of an exponential

attractor is established in [29]. Recently, in [28], the existence of an
exponential attractor of this semigroup is established in the case

θ ∈ (
1
2
,
3
4
), and q ∈ (0,

8θ
3 − 4θ

].

Our main goal in this paper is to show that the asymptotic
behavior as t → +∞ of solutions of the problem (1.1)–(1.3) in E

for q ∈ [0,
8θ

3 − 4θ
] when θ ∈ (

1
2
,
3
4
), and

for q ≥ 0 when θ ∈ [
3
4
, 1)

(1.8)

is determined by asymptotic behavior as t → +∞ of projection of
solution on some finite-dimensional subspace of the correspond-
ing phase space. Furthermore, we also establish for the first time
the existence of an exponential attractor in E for the case

q ≥ 0 when θ ∈ [
3
4
, 1).

The results we obtained can be considered as a development of
results on finite-dimensional asymptotic behavior of solutions of
initial boundary value problem for 3D nonlinear wave equation
with structural damping obtained in [26,29,35].

2. Preliminaries

Throughout the paper we will employ the following standard
notations:

• Lp(Ω), 1 ≤ p ≤ ∞, and Hs(Ω) are the usual Lebesgue and
Sobolev spaces, respectively.

• A := −∆ is the Laplace operator subject to the no-slip ho-
mogeneous Dirichlet boundary condition with the domain
H2(Ω) ∩ H1

0 (Ω). The operator A is a self-adjoint positively
definite operator in H , whose inverse A−1 is a compact
operator from L2(Ω) into L2(Ω). Thus it has an orthonormal
system of eigenfunctions {wj}

∞

j=1 of A.

• We denote by {λj}
∞

j=1, 0 < λ1 ≤ λ2 ≤ · · · , the eigen-
values of the operator A corresponding to orthonormal
set of eigenfunctions {wj}

∞

j=1, repeated according to their
multiplicities.

• For N ≥ 1, PN will denote the projection operator in L2(Ω)
onto the subspace generated by the first N eigenfunctions,
and we set QN = I − PN . ∥ · ∥, (·, ·) stand for the standard
norm, and the inner product in L2(Ω).

• ∥ · ∥s denotes the norm in Hs
:= D(A

s
2 ), and ∥ · ∥−s denotes

the norm in the dual spaceH−s
:=

(
D(A

s
2 )
)′

. Then, for s ∈ R
one has the following Parseval identity:

∥u∥2
s = ∥A

s
2 u∥2

=

∞∑
k=1

λs
k(u, wk)2.

From this it is easy to deduce the following Poincaré inequal-
ity. For all s ≥ r ∈ R, and N ≥ 1 we have

∥QNu∥2
s ≥ λs−r

N+1∥QNu∥2
r (2.1)

for any u ∈ Hs.
• In the sequel we will make use of the following monotonic-

ity inequality (see, e.g. [22])

d1
(
|u|p + |v|

p)
|u − v|

2
≤
(
|u|pu − |v|

pv
)(
u − v

)
≤ d2

(
|u|p + |v|

p)
|u − v|

2, p ≥ 1,
(2.2)

for any u, v ∈ R, where d1, d2 > 0 are constants depending
only on p and the Young inequality with ε

ab ≤ ϵ
ap

p
+

1
ϵq/p

bq

q
, (2.3)

which is satisfied for each a, b > 0 and ϵ > 0, where
p, q > 1 and 1

p +
1
q = 1.
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