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a b s t r a c t

A new method is developed to derive the bounds of the effective thermal conductivity of
composites with ellipsoidal inclusions. The transition layer for each ellipsoidal inclusion
is introduced to make the trial temperature field for the upper bound and the trial heat flux
field for the lower bound satisfy the continuous interface conditions which are absolutely
necessary for the application of variational principles. According to the principles of min-
imum potential energy and minimum complementary energy, the bounds of the effective
thermal conductivity of composites with ellipsoidal inclusions are rigorously derived. The
effects of the distribution and geometric parameters of ellipsoidal inclusions on the bounds
of the effective thermal conductivity of composites are analyzed. It should be shown that
the present method is simple and needs not calculate the complex integrals of multi-point
correlation functions. Meanwhile, the present method provides a powerful way to bound
the effective thermal conductivity of composites, which can be developed to obtain a series
of bounds by taking different trial temperature and heat flux fields. In addition, the present
upper and lower bounds still are finite when the thermal conductivity of ellipsoidal inclu-
sions tends to 1 and 0, respectively.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of determining the effective physical properties of statistically homogeneous two-phase composites has an
extensive history, cf. the reviews of Elsayed [5], Batchelor [1], Hashin [10] and Torquato [20]. Due to reasons of mathematical
analogy, the results of the present paper can translate immediately into equivalent results for the effective electric conduc-
tivity, dielectric constant, and magnetic permeability of such composites.

Several methods have been developed to derive bounds on effective parameters of composites. Hashin [9] has derived
bounds of the effective elastic moduli for statistically homogeneous and transversely isotropic materials by introducing
polarization fields and applying variational principles. These bounds are expressed in terms of the volume fraction, which
is the simplest statistical information related to the effective properties of two-phase composites. Willis [21] has derived
the bounds of the effective elastic moduli for transversely isotropic composites consisting of matrix with aligned spheroidal
particles or circular cracks. Other derivations and extensions have been given by Kantor and Bergman [13] using the analytic-
function method and by Francfort and Murat [6] via the translation method. Just as pointed out by Hashin [10], it is necessary
to incorporate additional geometrical information to improve the bounds.

In an early paper, Brown [3] has demonstrated the futility of trying to determine exact effective properties of two-phase
composites, such as the effective thermal conductivity, without a complete knowledge of the statistical information about
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composites. Without this knowledge, however, bounds on effective properties can be derived by variational principles. Hori
[11,12] has obtained the bounds for the effective conductivity of macroscopically anisotropic media by perturbation expan-
sions. However, the n-point microstructural parameters involve the derivatives of the correlation functions rather than the
correlation functions themselves. Sen and Torquato [19] have derived a new perturbation expansion for the effective con-
ductivity of d-dimensional two-phase media of arbitrary topology which depends on n-point parameters. Phan-Thien and
Milton [18] have derived the third- and fourth-order bounds for the effective thermal conductivity of composites in terms
of the perturbation solution to the effective thermal conductivity problem for an N-component material. Bruno [4] has inves-
tigated the effective conductivity of two-phase composites and given the corresponding bounds by using the complex var-
iable method. More restrictive bounds on the effective properties which include additional information about the
microstructure of composites have also been obtained by Beran and Molyneux [2], McCoy [16], Milton and Phan-Thien
[15], and Pham [17].

In the present paper, we seek to give the rigorous bounds on the effective thermal conductivity of composites with
ellipsoidal inclusions. In Section 2, some basic formulas and conditions which are used to derive the bounds of the effec-
tive thermal conductivity of composites are given. In Section 3, the transition layers between the remnant matrix and
ellipsoidal inclusions are established to make the trial temperature field in the composite keep continuous. According
to the principle of minimum potential energy, the upper bound on the effective thermal conductivity of composites is de-
rived. In Section 4, the trial heat flux field in the composite is constructed to satisfy the differential equation, boundary
condition and interface conditions between transition layers and other regions (ellipsoidal inclusions and remnant matrix).
The lower bound on the effective thermal conductivity of composites is derived in terms of the principle of minimum
complementary energy. In Section 5, the upper and lower bounds on the effective thermal conductivity are calculated.
The effects of the distribution and geometric parameters of ellipsoidal inclusions on the bounds of the effective thermal
conductivity are analyzed. It needs to be pointed out that the present method has the following advantages: (1) it is sim-
ple; (2) it does not need to calculate the complex integrals of multi-point correlation functions; (3) it provides a powerful
way to bound the effective thermal conductivity of composites with ellipsoidal inclusions; (4) it can consider the limiting
cases that the thermal conductivity of ellipsoidal inclusions tends to 1 and 0, respectively. Finally, some conclusions are
summarized in Section 6.

In what follows, the summation convention is used only for subscripts with Small Latin letters, and Great Latin and Greek
letters in superscripts and subscripts are not summed. The subscript with a bar is called as the dummy suffix which is not
summed and only takes the same value with the non-dummy suffix. A comma denotes partial differentiation, for example,
f,i(x) means @f(x)/@xi.

2. Basic relations

Consider a statistically homogeneous two-phase composite with the representative volume V where the volumes of ellip-
soidal inclusions and matrix are VI and VM, respectively, and boundary surface S. Let the thermal conductivities of ellipsoidal
inclusions and matrix be denoted by rI and rM, respectively. The equations governing steady-state heat conduction at point
x 2 V are as follows:

Differential equation:

QK
i;iðxÞ ¼ 0; ðK ¼ I;MÞ ð1Þ

where QI
iðxÞ and QM

i ðxÞ are the components of heat flux vectors along the xi-direction in ellipsoidal inclusions and matrix,
respectively.

Constitutive relation:

QK
i ðxÞ ¼ rK EK

i ðxÞ ðK ¼ I;MÞ ð2Þ

where EI
iðxÞ and EM

i ðxÞ are the components of temperature gradient vectors along the xi-direction in ellipsoidal inclusions and
matrix, respectively.

Gradient equation:

EK
i ðxÞ ¼ �TK

;i ðxÞ; ðK ¼ I;MÞ ð3Þ

where TI(x) and TM(x) are the temperature fields in ellipsoidal inclusions and matrix, respectively.
Homogeneous boundary conditions:

TðSÞ ¼ �E0
i xi; x 2 S ð4aÞ

QnðSÞ ¼ Q 0
i ni; ð4bÞ

where E0
i and Q 0

i are uniform temperature gradient and heat flux components, respectively, Qn(S) is the normal com-
ponent of the heat flux vector on the boundary, xi are Cartesian coordinates, and ni are the components of the unit
normal vector on surface S. Eqs. (4a) and (4b) are called as the first and second kinds of boundary conditions,
respectively.
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