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h i g h l i g h t s

• We study a Fokker–Planck equation with degenerate diffusion coefficients.
• The equation describes the dynamics of quantitative traits.
• We construct mass and positivity preserving weak solutions of the equation.
• Existence of a positive spectral gap implies exponential convergence to equilibrium.
• We study analytically and numerically the ‘‘Dynamic Maximum Entropy’’ approximation.
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a b s t r a c t

We study the Fokker–Planck equation derived in the large system limit of the Markovian process
describing the dynamics of quantitative traits. The Fokker–Planck equation is posed on a bounded domain
and its transport and diffusion coefficients vanish on the domain’s boundary. We first argue that, despite
this degeneracy, the standard no-flux boundary condition is valid. We derive the weak formulation of
the problem and prove the existence and uniqueness of its solutions by constructing the corresponding
contraction semigroup on a suitable function space. Then, we prove that for the parameter regime with
high enough mutation rate the problem exhibits a positive spectral gap, which implies exponential
convergence to equilibrium.

Next, we provide a simple derivation of the so-called Dynamic Maximum Entropy (DynMaxEnt)
method for approximation of observables (moments) of the Fokker–Planck solution, which can be
interpreted as a nonlinear Galerkin approximation. The limited applicability of the DynMaxEnt method
inspires us to introduce its modified version that is valid for the whole range of admissible parameters.
Finally, we present several numerical experiments to demonstrate the performance of both the original
and modified DynMaxEnt methods. We observe that in the parameter regimes where both methods
are valid, the modified one exhibits slightly better approximation properties compared to the original
one.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Quantitative genetics studies evolution of biologically impor-
tant traits which are continuous (e.g., size, weight, lifespan, color)
and depend on many loci; some of the loci contribute to the
trait with a large effect but majority contribute with very small
effect. Selection, mutation and stochasticity affect the evolution
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of quantitative traits and lead to complex dynamics that is of-
ten studied using mathematical models. However, most of these
models are discrete and stochastic and their complexity obscures
rigorous analysis of the effects of various parameters, that are key
for biological interpretation. Therefore, the discrete processes are
often replaced by continuous approximation, leading to the so-
called diffusion theory, which accurately approximates multiple
classes of population genetics models [1–4].

The diffusion theory describes the dynamics of allele frequen-
cies x = (x1, . . . , xL), where L is the number of loci that contribute
to the trait. Each locus allows two possible alleles (type 0 and 1)
and xi is the proportion of alleles 1 at the ith locus in a population
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of N diploid individuals. The joint probability density of allele
frequencies u = u(t, x) then satisfies the linear Fokker–Planck
equation (i.e., the deterministic forward Kolmogorov equation) of
a form
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on Ωx := (0, 1)L, where we denoted ξi := ξ (xi) = xi(1 − xi) for
i = 1, . . . , L. The diffusion term captures the stochasticity of the
allele frequencies arising from random sampling. Here we assume
that linkage disequilibria are negligible, otherwise this termwould
be of cross-diffusion type, reflecting correlations between loci [5].
This biologically corresponds to a sufficiently fast recombination
such that the population can be represented by allele frequencies.
The Eq. (1.1) describes a broad range of evolutionary scenarios.
These depend on the form of the drift term, which captures deter-
ministic effects on allele frequencies that are described by a vector
of coefficients α and a vector of complementary quantities A. We
assume the mathematically simplest form of directional selection,
extended to dominance, which adds selection on heterozygous
individuals. Moreover, we assume symmetrical mutation (easily
generalizable to asymmetrical mutation), which together, using
the notation of [5], corresponds to the choice
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where the nondimensional parameters β, h, γi, ηi ∈ R represent
the effects of loci on the traits, µ > 0 is the mutation rate, and
ξ ′

i := ξ ′(xi) = 1−2xi. For notational simplicity and without loss of
generality, we set β = h = 1 in the sequel, so that

α = (−γ1, . . . ,−γL, 2η1, . . . , 2ηL, 2µ, . . . , 2µ) ∈ R3L.

The main difficulty for analysis of the Fokker–Planck equation
(1.1) is the degeneracy of the diffusion coefficients ξi = xi(1 − xi)
at the boundary of Ωx, which arises due to finite population size.
Consequently, the task of prescribing boundary conditions that
lead to a well-posed problem is far from obvious; see also [6,7]
for related issues in population genetics problems. As noted above,
we aim at interpreting the solution u as a time-dependent prob-
ability density, which calls for a no-flux boundary condition. In
Section 2 we argue that the standard no-flux boundary condition
is indeed appropriate for (1.1). In Section 3 we derive the weak
formulation of (1.1) subject to the no-flux boundary condition and
prove the existence and uniqueness of its solutions by constructing
the corresponding contraction semigroup. Then, in Section 4 we
prove that for the parameter regime with high enough mutation
rate the problem exhibits a positive spectral gap, which implies
exponential convergence to equilibrium.

The main challenge of quantitative genetics is to predict the
dynamics of the complex traits, particularly when the genetic
forces are changing in time. If all evolutionary forces α (with
a possible time-dependence) are known one may simply solve
the Fokker–Planck equation (1.1) and use the allele frequency
distribution u(t, x) to obtain the trait mean and other observ-
ables of interest by computing expectations of functions of allele
frequencies subject to u(t, x). However, Eq. (1.1) is too complex
both for analytical solutions and for effective numerical meth-
ods in the multi-locus case. Therefore, we present a method that
approximates the macroscopic observables of the Fokker–Planck
solution without needing to solve the PDE (for more biological
details see [5]). Section 5 is devoted to the study of this approxima-
tion, the so-called Dynamic Maximum Entropy (DynMaxEnt). We

first show in Section 5.1 that a related constrained entropy max-
imization is equivalent to a moment-matching problem, which
we solve in a simple case. This provides an interpretation of the
observables and evolutionary forces as the variational constraints
and the corresponding Lagrange multipliers. Then, in Section 5.2
we provide a simple and straightforward derivation of the Dyn-
MaxEnt method by adopting a quasi-stationary approximation,
by assuming that at every time the allele frequency distribution
can be approximated by an equilibrium distribution with some
evolutionary parameters α(t), that change in time to match the
observables. This results in a nonlinear low-dimensional system
of ordinary differential equations. It should be noted that the ap-
proximation is exact if the system is in equilibrium. It can be inter-
preted as a nonlinear Galerkin approximation of the Fokker–Planck
equation (1.1).

However, this ‘‘original’’ DynMaxEnt method cannot be applied
in the biologically realistic regime of small mutations, i.e., when
4Nµ ≤ 1. This inspires us to introduce a modified version, which
is valid for the whole range of admissible parameters, Section
5.3. Finally, in Section 6 we present several numerical experi-
ments to demonstrate the performance of both the original and
modified DynMaxEnt methods. We observe that in the parameter
regimes where both methods are valid, the modified one exhibits
slightly better approximation properties compared to the original
one.

The surprisingly good approximation properties of the Dyn-
MaxEnt method, as documented by the numerical results in [5]
and Section 6 of this paper, suggest that the infinitely-dimensional
dynamics of the Fokker–Planck equation (1.1) can be well approx-
imated by suitable finitely-dimensional dynamical systems. This
is reminiscent of the recent series of works of E. Titi and collab-
orators [8–12] where a data assimilation (downscaling) approach
to fluid flow problems is developed, inspired by ideas applied
for designing finite-parameters feedback control for dissipative
systems. The goal of a data assimilation algorithm is to obtain (nu-
merical) approximation of a solution of an infinitely-dimensional
dynamical system corresponding to givenmeasurements of a finite
number of observables. In particular, in [8], it has been shown that
solutions of the two-dimensional Navier–Stokes equations can be
well reconstructed from a relatively low number of low Fourier
modes or local averages over finite volume elements. In [9], con-
tinuous data assimilation (CPA) algorithm was proposed and an-
alyzed for a two-dimensional Bénard convection problem, where
the observables were incorporated as a feedback (nudging) term
in the evolution equation of the horizontal velocity. In [10] CPA
was applied for downscaling a coarse resolution configuration of
the 2D Bénard convection equations into a finer grid, while in [11]
the CPA method is studied for a three-dimensional Brinkman–
Forchheimer-extended Darcy model of porous media, and in [12]
for the three-dimensional Navier–Stokes–α model. Finally, in [13]
numerical performance of the CPA algorithm in the context of
the two-dimensional incompressible Navier–Stokes equationswas
studied. It was shown that the numerical method is computation-
ally efficient and performs far better than the analytical estimates
suggest. This is similar to our numerical observations showing very
good approximation properties of the DynMaxEnt method applied
to the Fokker–Planck equation (1.1).

2. Boundary conditions for the stationary problem

As pointed out in Section 1, the degeneracy of the diffusion
coefficients ξi = xi(1 − xi) at the boundary ∂Ωx renders the
question which type of boundary conditions shall be prescribed (if
any at all) to produce awell-posed problem.However, the essential
property that we want to impose on the solution is total mass
conservation (together with nonnegativity preservation), so that
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