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a b s t r a c t

Weaddress preservation of the Lagrangian analyticity radius of solutions to the Euler equations belonging
to natural analytic space based on the size of Taylor (or Gevrey) coefficients. We prove that if the solution
belongs to such space, then the solution also belongs to it for a positive amount of time. We also prove
the local analog of this result for a sufficiently large Gevrey parameter; however, we show that the
preservation holds independently of the size of the radius. Finally, we construct a solution which shows
that the first result does not hold in the Eulerian setting.
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1. Introduction

The motion of a fluid can be described either in reference to a
fixed space–time point (x, t) (Eulerian coordinates) or by following
the flow lines of individual fluid particles (Lagrangian coordinates).
It is known that these two formulations are significantly different.
There are examples of 3D steady flows with complicated particle
paths where streamlines have the space filling property (cf. [1]).
Conversely, there are cases where the Lagrangian formulation is
better adapted.

In this paper we study the Lagrangian formulation of the in-
compressible Euler equations on Rd, where d ∈ {2, 3}. It is known
from [2–5] that a solution of the Euler equations remains analytic
(or more generally Gevrey regular) if it is so initially, as long as the
solution exists. It is an interesting question whether the solution
actually belongs to the same analytic space for a positive amount
of time. This is since while solutions remain analytic (or more
generally Gevrey regular), the radius may actually decrease. In [6],
it was shown that the Lagrangian solution of the Euler equation (or
more generally Gevrey) belongs to the same analytic space as the
initial data for a positive amount of time. The space in [6] requires
summability of Taylor coefficients. Moreover, it was shown, that
the same statement does not hold in the Eulerian setting, i.e., a
solution was constructed whose sum of Taylor coefficients strictly
decreases as time increases.
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In this paper, we address the issue of persistence with respect
to the analytic space which is however based on the natural supre-
mum condition for the Taylor coefficient (i.e., uniform analytic-
ity/Gevrey regularity) as studied say in [7] and many other works
(cf. [8–12]). More precisely, by defining a suitable Lagrangian
Gevrey-class norm, we prove that if the initial velocity gradient is
of Gevrey-class s, where s ≥ 1, then the Sobolev solution v(·, t) ∈

C([0, T ];Hr (Rd)) is of Gevrey-class s for all t < T . Wewould like to
emphasize that the main result in [6] and Theorem 3.1 here do not
imply each other; they both establish that the solution persists in
a certain analytic space, which have different definitions (and are
both natural in a certain sense).

In the second main result, Theorem 4.1, we establish a local
version of the preservation of the Lagrangian radius. Namely, we
prove that the local Gevrey radius is preserved on a positive time
interval, regardless of the size of the Gevrey radius (i.e., even if it
is larger than the diameter of the domain). The statement requires
the usual assumption that the Sobolev norm of the velocity stays
finite for a small time, i.e., supt∈[0,T ]∥v(·, t)∥Hr (B(0,R)) < ∞, and that
the Gevrey parameter is sufficiently large. It would be interesting
to prove this for the full range of Gevrey radii, although thismay be
true in the analytic case only for radii sufficiently small. In a third
main result, Theorem5.1, we demonstrate that our global analytic-
ity result does not hold in the Eulerian coordinates by constructing
an explicit initial data for which the radius strictly decreases. A
similar example was provided in [6]; however, the nature of our
space (the supremum assumption instead of integrability), allows
for a simpler construction, which can be carried out in the original
variables (rather than in the Fourier space as in [6]).

The Lagrangian approach has gained a strong interest due to the
possibility that the Lagrangian paths could be analytic in time, a
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fact which was first observed by Serfati [13]. Earlier, Chemin [14]
proved that the Lagrangian trajectories are C∞ smooth. More re-
cently, in [15–17], the authors developed an elementary theory of
analytic fluid particle trajectories. Their work is based on Cauchy’s
long-forgottenmanuscript (1815) on Lagrangian formulation of 3D
incompressible Euler equations in terms of Lagrangian invariants.
For further results on time-analyticity of Lagrangian trajectories,
we refer the reader to [18–20] and to [21] for advantages of the
Lagrangian formulation in the Hölder class.

The remarkable difference in time analyticity of the two formu-
lations suggests a further discussion on the analytic regularity of
solutions. There is quite a rich history on the persistence of real-
analyticity of the solutions in both two and three dimensions with
manyworks pointing out the contrast between the Lagrangian and
Eulerian analytic regularity (cf. [2,3,22–26]). In [3], the authors
established a lower bound of the form exp(−C exp(CT ))/C for the
radius of analyticity in 2D, with the constant C depending on the
initial data. Finding explicit rates for the decay of the radius of
analyticity was studied further using different methods in [27,28]
for the interior and in [29] for the boundary value problem. Also,
in [30,31] the authors extended the results in [28,29] to the non-
analytic Gevrey classes and improved the dependence on the initial
datum. For space-periodic domains, Levermore and Oliver gave in
[5] a proof of persistence of analyticity for all times. Their proof is
based on a characterization of Gevrey classes in terms of decay of
Fourier coefficients.

Furthermore, the shear flow example (cf. [32,33]) has gener-
ated numerous constructions of explicit solutions to periodic 3D
Euler equations whose radius of analyticity decays for all time. In
the analytic class (Gevrey-1 class) case, cf. [30, Remark 1.3] and
[6, Theorem 1.3]. Also, one can construct an example in the non-
analytic Gevrey classes with s > 1 (cf. [34]). Moreover, in [6] the
authors point out the difference of behaviors in the two formula-
tions; the radius of analyticity is conserved locally in time for the
Lagrangian formulation, whereas it deteriorates instantaneously
in the Eulerian one. A similar contrast is also observed in terms
of solvability in anisotropic classes. The Lagrangian formulation is
locally well-posed in anisotropic classes yet the equations are ill-
posed in Eulerian coordinates.

The paper is organized as follows. In Section 2, we introduce
the Gevrey-class space using the supremum over Taylor coeffi-
cients (as opposed to their sum as in [6]). Furthermore, the well-
posedness of Lagrangian formulation in anisotropic Gevrey classes
holds for local solutions as well. In Section 3, we prove that if the
Gevrey regularity parameter is sufficiently large (cf. (4.1) below),
then the analyticity radius is preserved in the future, regardless
of its size. It is an interesting question if this theorem can be
extended for analytic class as well. Finally, in Section 5, we provide
a counterexample to Theorem 3.1 in the Eulerian setting.

The paper is dedicated to Professor Edriss Titi on the occasion of
his sixtieth birthday in admiration of his work and in appreciation
for his support throughout the years.

2. Euler equations in Lagrangian coordinates

The incompressible homogeneous Euler equations in Rd, for
d = 2, 3, are given by the system of equations

ut + u · ∇u + ∇p = 0 (2.1)
∇ · u = 0 (2.2)

u(x, 0) = u0(x) (2.3)

for (x, t) ∈ Rd
× [0,∞). The above system models the flow of an

incompressible, homogeneous, and inviscid fluid, where u(x, t) =

(u1, . . . , ud) denotes the fluid velocity and p(x, t) the pressure.
We rewrite the Euler equations using the particle trajectory

mapping X(·, t) : α ↦→ X(α, t) ∈ Rd, where t ≥ 0. The vector

X(α, t) = (X1, . . . , Xd) denotes the location of a fluid particle at
time t that is initially placed at the Lagrangian label α, and is given
by an ODE

∂tX(α, t) = u(X(α, t), t) (2.4)
X(α, 0) = α. (2.5)

Composing the velocity and the pressure with X , we obtain the
Lagrangian velocity v and the pressure q by

v(α, t) = u(X(α, t), t)
q(α, t) = p(X(α, t), t).

Also, denote by Y k
i the (k, i)th entry of the inverse of the Jacobian

of X , i.e.,

Y (α, t) = (∇αX(α, t))−1.

We then write the Lagrangian formulation of the Euler equations
as

∂tv
i
+ Y k

i ∂kq = 0, i = 1, . . . , d (2.6)

Y k
i ∂kv

i
= 0 (2.7)

with the summation convention on repeated indices understood.
The system (2.6)–(2.7) is supplemented with the initial conditions

v(α, 0) = v0(α) = u0(α)
Y (α, 0) = I.

Differentiating (2.4) with respect to the Lagrangian labels along
with using det(∇X) = 1 and inverting the matrix in the resulting
equation, we get

Yt = −Y : (∇v) : Y (2.8)

where the symbol : denotes the matrix multiplication. Taking the
curl of the Eq. (2.1) and using ∇ × (u · ∇u) = u · ∇ω − ω · ∇u, we
obtain

∂tω + u · ∇ω = ω · ∇u.

Hence,
Dω
Dt

= ω · ∇u

where D/Dt is the convective derivative, i.e., the derivative along
the particle trajectories. In 2D flows the vorticity is conserved,
i.e., ζ (α, t) = ω0(a) for t ≥ 0. Denoting the sign of the permutation
(1, 2) ↦→ (i, j) by ϵij, we may write the Euler system as

ϵijY k
i ∂kv

j
= Y k

1 ∂kv
2
− Y k

2 ∂kv
1

= ω0 (2.9)

Y k
i ∂kv

i
= Y k

1 ∂kv
1
+ Y k

2 ∂kv
2

= 0. (2.10)

If d = 3, we may use the vorticity-transport formula ζ i(α, t) =

∂kX i(α, t)ωk
0(α) and proceed as in [6] to write the Euler equations

as

ϵijkYm
i Y l

j ∂lv
k
= Ym

i ζ
i
= ωm

0 , m = 1, 2, 3 (2.11)

Y k
i ∂kv

i
= 0. (2.12)

The Eq. (2.11), derived in [6], represents a way to write the Cauchy
invariance formula without involving X .

3. The preservation of the Gevrey radius

We start by recalling the definition of Gevrey spaces. For any
s ≥ 1, we define the s-Gevrey norm with radius δ > 0 by

∥f ∥Gs,δ = sup
|α|≥0

δ|α|

|α|!
s ∥∂

α f ∥Hr
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