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h i g h l i g h t s

• The stochastic Camassa–Holm (SCH) equation is derived variationally.
• Peakon solutions and isospectrality conditions are found for the SCH equation.
• Wave breaking also survives introducing stochasticity into the SCH equation.

a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Emergent singularities
Stochastic PDEs
Nonlinear waves

a b s t r a c t

We show that wave breaking occurs with positive probability for the Stochastic Camassa–Holm (SCH)
equation. This means that temporal stochasticity in the diffeomorphic flowmap for SCH does not prevent
the wave breaking process which leads to the formation of peakon solutions. We conjecture that the
time-asymptotic solutions of SCHwill consist of emergentwave trains of peakonsmoving along stochastic
space–time paths.
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1. The deterministic Camassa–Holm (CH) equation

The deterministic CH equation, derived in [1], is a nonlinear
shallow water wave equation for a fluid velocity solution whose
profile u(x, t) and its gradient both decay to zero at spatial infinity,
|x| → ∞, on the real line R. Namely,

ut − uxxt + 3uux = 2uxuxx + uuxxx , (1.1)

where subscripts t (resp. x) denote partial derivatives in time (resp.
space). This nonlinear, nonlocal, completely integrable PDEmay be
written in Hamiltonian form for a momentum densitym := u− uxx
undergoing coadjoint motion, as [1]

mt = {m, h(m)} = − (∂xm + m∂x)
δh
δm

, (1.2)

which is generated by the Lie–Poisson bracket

{f , h}(m) = −

∫
δf
δm

(
∂xm + m∂x

) δh
δm

dx (1.3)

and Hamiltonian function

h(m) =
1
2

∫
R
mK ∗ mdx =

1
2

∫
R
u2

+ u2
x dx
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=
1
2

∥u∥2
H1 = const. (1.4)

Here, K ∗ m :=
∫
K (x, y)m(y, t)dy denotes convolution of the

momentum density m with Green’s function of the Helmholtz
operator L = 1 − ∂2x , so that

δh
δm

= K ∗ m = u with K (x − y) =
1
2
exp(−|x − y|) . (1.5)

Alternatively, the CH equation (1.1) may be written in advective
form as

ut + uux = − ∂x

(
K ∗

(
u2

+
1
2
u2
x

))
= − ∂x

∫
R

1
2
exp(−|x − y|)

(
u2(y, t) +

1
2
u2
y(y, t)

)
dy . (1.6)

The deterministic CH equation admits signature solutions rep-
resenting a wave train of peaked solitons, called peakons, given by

u(x, t) =
1
2

M∑
a=1

pa(t)e−|x−qa(t)| = K ∗ m , (1.7)

which emerge from smooth confined initial conditions for the
velocity profile. Such a sum is an exact solution of the CH equa-
tion (1.1) provided the time-dependent parameters {pa} and {qa},
a = 1, . . . ,M , satisfy certain canonical Hamiltonian equations,
to be discussed later. In fact, the peakon velocity wave train in
(1.7) is the asymptotic solution of the CH equation for any spatially
confined C1 initial condition, u(x, 0).
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Fig. 1.1. Under the evolution of the CH equation (1.1), an ordered wave train of peakons emerges from a smooth localized initial condition (a Gaussian). The speeds are
proportional to the heights of the peaks. The spatial profiles of the velocity at successive times are offset in the vertical to show the evolution. The peakon wave train
eventually wraps around the periodic domain, thereby allowing the faster peakonswhich emerge earlier to overtake slower peakons emerging later from behind in collisions
that conserve momentum and preserve the peakon shape but cause phase shifts in the positions of the peaks, as discussed in [1].

Remark 1. The peakon-train solutions of CH represent an emergent
phenomenon. A wave train of peakons emerges in solving the
initial-value problem for the CH equation (1.1) for any smooth
spatially confined initial condition. An example of the emergence
of a wave train of peakons from a Gaussian initial condition is
shown in Fig. 1.1.

Remark 2. By Eq. (1.5), the momentum density corresponding to
the peakon wave train (1.7) in velocity is given by a sum over delta
functions inmomentumdensity, representing the singular solution,

m(x, t) =

M∑
a=1

pa(t) δ(x − qa(t)) , (1.8)

in which the delta function δ(x − q) is defined by

f (q) =

∫
f (x)δ(x − q) dx , (1.9)

for an arbitrary smooth function f . Physically, the relationship
(1.8) represents the dynamical coalescence of the CH momentum
density into particle-like coherent structures (Young measures)
which undergo elastic collisions as a result of their nonlinear inter-
actions. Mathematically, the singular solutions of CH are captured
by recognizing that the singular solution ansatz (1.8) itself is an
equivariant momentum map from the canonical phase space of M
points embedded on the real line, to the dual of the vector fields on
the real line. Namely,

m : T ∗Emb(Z,R) → X(R)∗. (1.10)

This momentummap property explains, for example, why the sin-
gular solutions (1.8) form an invariant manifold for any value ofM
and why their dynamics form a canonical Hamiltonian system [2].

The complete integrability of the CH equation as a Hamiltonian
system follows from its isospectral problem.

Theorem 3 (Isospectral Problem for CH [1]). The CH equation in
(1.1) follows from the compatibility conditions for the following CH
isospectral eigenvalue problem and evolution equation for the real
eigenfunction ψ(x, t),

ψxx =

(
1
4

−
m
2λ

)
ψ , (1.11)

∂tψ = −(λ+ u)ψx +
1
2
uxψ , (1.12)

with real isospectral parameter, λ.

Proof. By direct calculation, equating cross derivatives ∂tψxx =

∂2x ∂tψ using Eqs. (1.11) and (1.12) implies the CH equation in (1.1),
provided dλ/dt = 0. □

Remark 4. The complete integrability of the CH equation as a
Hamiltonian system and its soliton paradigm explain the emer-
gence of peakons in the CH dynamics. Namely, their emergence
reveals the initial condition’s soliton (peakon) content.

1.1. Steepening lemma: the mechanism for peakon formation

In the followingwewill continueworking on the entire real line
R, although similar results are also available for a periodic domain
with only minimal effort. We use the notation ∥u∥2, ∥u∥1,2 and
∥u∥∞ to denote, respectively,

∥u∥2
2 :=

∫
∞

−∞

(
u2) dy , ∥u∥2

1,2 :=

∫
∞

−∞

(
u2

+
1
2
u2
y

)
dy , and

∥u∥∞ := sup
x∈R

∥u(x)∥.

Remark 5 (Local Well-Posedness of CH). As reviewed in [2], the
deterministic CH equation (1.1) is locallywell posed onR, for initial
conditions in Hs with s > 3/2. In particular, with such initial data,
CH solutions are C∞ in time and the Hamiltonian h(m) in (1.4) is
bounded for all time,

h := ∥u(·, t)∥1,2 < ∞.

In fact, CH solutions preserve the Hamiltonian in (1.4) given by the
∥u(·, t)∥1,2 norm

∥u(·, t)∥1,2 = h = constant, for all x ∈ R. (1.13)

By a standard Sobolev embedding theorem, (1.13) also implies the
useful relation that

M := sup
t∈[0,∞)

∥u(·, t)∥∞ < ∞. (1.14)
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