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h i g h l i g h t s

• Clot growth is described as traveling wave in the reaction–diffusion system.
• Critical initial condition for wave propagation is pulse solution.
• Existence of pulse solutions is proved using Leray–Schauder method.
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a b s t r a c t

Formation of blood clot in response to the vessel damage is triggered by the complex network of
biochemical reactions of the coagulation cascade. The process of clot growth can bemodeled as a traveling
wave solution of the bistable reaction–diffusion system. The critical value of the initial condition which
leads to convergence of the solution to the traveling wave corresponds to the pulse solution of the
corresponding stationary problem. In the current study we prove the existence of the pulse solution for
the stationary problem in the model of the main reactions of the blood coagulation cascade using the
Leray–Schauder method.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The main function of blood coagulation is the formation of
blood clot covering the injury site and preventing further blood
leak in case of vessel damage. One can define three main stages
of the blood coagulation process: initiation of the clotting process,
amplification of clot formation and clot growth arrest [1,2]. Clot
growth is triggered by the enzyme thrombin that catalyzes fib-
rinogen conversion to fibrin which leads to blood gelation [3,4].
During each stage of the coagulation process the speed of thrombin
formation is determined by the action of different proteins. Initial
amount of thrombin is formed in response to the exposure of the
tissue factor to blood plasma with help of factors VIIa and Xa [5,6],
or as the result of factor XI activation on the foreign surface through
the reactions of the contact system [7]. Amplification phase takes
place thanks to the positive feedback loops of the blood coagulation
cascade with participation of factors XI, X, IX, VIII, V and their
complexes [8]. The main mechanisms of the clot growth arrest are
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the action of the direct thrombin inhibitors such as antithrom-
bin [9], the mechanical removal of the active substances by the
blood flow and the active protein C pathway [2]. Whether the
amplification phase of the coagulation cascade will be launched
or not depends on the amount of thrombin formed during the
initiation stage [5]. In the current studyweaddress triggering of the
coagulation system from the initiation to the amplification phase
using a mathematical model.

Clot growth can be described as a reaction–diffusion wave for
the concentrations of blood factors [10–12]. Under certain assump-
tions we can prove existence and stability of such solutions for
the model system of coagulation cascade [13]. We suppose that
thrombin production during the coagulation process is described
by a bistable system. Indeed, under normal conditions, accelerated
thrombin formation occurs only in response to the significantly
important initial stimuli [5,14,15]. Under this assumption, the con-
vergence of the solution of the model system to a traveling wave
takes place only for the sufficiently large initial condition. In terms
of biochemical process, the amount of thrombin formed during the
initiation stage must exceed some threshold value to launch the
amplification phase of blood coagulation process. The threshold
value for the initial conditions that guarantees convergence of the
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solution to the traveling wave in case of one PDE is a stationary
solution of the system in particular form called pulse solution.
The similar criteria was proven for the system of two equations in
particular form [16]. In the current studywe consider the existence
of pulse solutions for a system of PDE describing the action of the
coagulation cascade.

Thrombin production in quiescent plasma during the amplifica-
tion phase of blood coagulation can be described by the following
system of PDEs:

∂v1

∂t
= D

∂2v1

∂x2
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∂v2

∂t
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∂2v2
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∂T
∂t

= D
∂2T
∂x2
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(
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IIv1v5
) (

1 −
T
T0

)
− hIIT .

(1.1)

Here T denotes thrombin concentration, vi, i = 1, . . . , 5, respec-
tively denote concentrations of the activated forms of factors V,
VIII, XI, IX and X. The constant T0 denotes the maximal available
concentration of thrombin taken equal to the initial concentration
of prothrombin in blood plasma.

The diffusion coefficient D is a positive number. We suppose
that all the diffusion coefficients are equal to each other. Such
assumption is relevant for the coagulation cascade reaction since
all the participating proteins have approximately the same size. All
results remain valid in the case of different diffusion coefficients.

We consider a one-dimensional case with x axis perpendicular
to the vessel wall and directed from thewall to the vascular lumen.

A more detailed discussion of the model can be found in [13],
see also Appendix of this paper.

Let us set w = (w1, . . . , w5, T ) (alternatively we will also
denote w6 = T ). Then, system (1.1) can be written in the vector
form:

∂w
∂t

= D
∂2w
∂x2

+ F(w), (1.2)

where F = (F1, . . . , F6), is the vector of reaction rates in Eqs. (1.1).
The functions Fi take the form:

Fi(w) = αi(βiT − wi) for i = 1, 2, 3,
F4(w) = α4(β4w3 − w4),
F5(w) = α5 (β5w4 + γw2w4 − w5) ,

F6(w) = α6w5(1 + δw1)
(
1 −

T
T0

)
− σT ,

(1.3)

where the different constants are positive and are given by

α1 = hV , α2 = hVIII , α3 = hXI , α4 = hIX , α5 = hX , α6 = kII ,

β1 =
kV
hV
, β2 =

kVIII
hVIII

, β3 =
kXI
hXI
, β4 =

kIX
hIX
, β5 =

kX
hX
,

γ =
k∗

X

hX
, δ =

k∗

II

kII
, σ = hII .

The zeros w∗
= (w∗

1, . . . , w
∗

5, T
∗) of F satisfy the equations

w∗

1 = β1T ∗, w∗

2 = β2T ∗, w∗

3 = β3T ∗, w∗

4 = β3β4T ∗,

w∗

5 = β3β4T ∗(β5 + γ β2T ∗). (1.4)

Furthermore by expressing that F6(w∗) = 0 we find that T ∗ is a
root of some polynomial P of order four which takes the form:

P(T ) = TQ (T ) with Q (T ) = aT 3
+ bT 2

+ cT + d. (1.5)

Here a < 0 while the other coefficients of P have no a priori signs
(see Section 2.2 for the explicit values of the coefficients of P).
Consequently the zeros of F are in one-to-one correspondencewith
the ones of P . Clearly 0 is always a zero of P and the corresponding
zero of F is the origin 0 of R6.

Hereafter we will focus on the case where P has exactly two
positive zeros denoted by 0 < T̄ < T−. We will also assume that

Q (0) < 0, Q ′(T̄ ) > 0, Q ′(T−) < 0, (1.6)

(recall that Q is some polynomial of order three with negative
leading coefficient). It can be easily shown that T− < T0 (see
Section 2.2).

Consequently, F has exactly three zeros in R6
+
. Let us denote

them by w−, w̄ and w+ where w+
= 0 < w̄ < w− (here

and everywhere below inequalities for vectors mean that each
component of the vectors satisfies this inequality). Furthermore,
assumptions (1.6) guarantee that the principal eigenvalue of the
Jacobianmatrix of F atw± (resp. w̄) is negative (resp. positive) (see
Section 3.3). Hence the nonlinearity F is of the bistable type.

It is easy to check that Fi satisfy the following property for all
j ̸= i :

∂Fi
∂wj

(w) ≥ 0 if wk ≥ 0 for 1 ≤ k ≤ 5 and T < T0. (1.7)

Hence the system is monotone in that region of R6 containing the
positive zeros of F. It has a number of properties similar to those
for scalar equations including the maximum principle.

By virtue of the above properties, system (1.2) possesses a
unique traveling wave solution u(z), z = x − ct , satisfying the
following equations and limits at infinity:

Du′′
+ cu′

+ F(u) = 0, u(±∞) = w±, (1.8)

(up to some translation in space for u).
The stationary solutions of system (1.2) satisfy the elliptic sys-

tem:
Dw′′

i + αi(βiT − wi) = 0, i = 1, 2, 3,
Dw′′

4 + α4(β4w3 − w4) = 0,
Dw′′

5 + α5 (β5w4 + γw2w4 − w5) = 0,

DT ′′
+ α6w5(1 + δw1)

(
1 −

T
T0

)
− σT = 0.

(1.9)

Hereafter we consider system (1.9) on the real axis and look for an
even positive solution vanishing at infinity:

w(x) > 0, w(x) = w(−x), x ∈ R, w(±∞) = 0.

We will call such solutions pulses. Instead of the problem on the
whole axis, we can consider system (1.9) on the half-axis R+ with
the boundary condition

w′(0) = 0. (1.10)

We will look for the decreasing solutions defined on R+ and re-
quire:

w′(0) = 0, w(x) > 0 and w′(x) < 0 for x > 0,

w(∞) = 0. (1.11)

Then the pulse is obtained by extending this function on R by
symmetry.

We can now formulate the principal result of this work.



Download English Version:

https://daneshyari.com/en/article/8256199

Download Persian Version:

https://daneshyari.com/article/8256199

Daneshyari.com

https://daneshyari.com/en/article/8256199
https://daneshyari.com/article/8256199
https://daneshyari.com

