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DETERMINING MODES FOR THE SURFACE QUASI-GEOSTROPHIC
EQUATION

ALEXEY CHESKIDOV AND MIMI DAI

ABSTRACT. We introduce a determining wavenumber for the surface quasi-geostrophic
(SQG) equation defined for each individual trajectory and then study its dependence on
the force. While in the subcritical and critical cases this wavenumber has a uniform upper
bound, it may blow up when the equation is supercritical. A bound on the determining
wavenumber provides determining modes, and measures the number of degrees of freedom
of the flow, or resolution needed to describe a solution to the SQG equation.
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1. INTRODUCTION

In this paper we introduce a determining wavenumber Λθ(t) for the forced surface
quasi-geostrophic (SQG) equation

∂θ

∂t
+ u · ∇θ + νΛαθ = f,

u = R⊥θ,
(1.1)

on the torus T2 = [0, L]2, where 0 < α < 2, ν > 0, Λ =
√
−∆ is the Zygmund operator,

and
R⊥θ = Λ−1(−∂2θ, ∂1θ).

The scalar function θ represents the potential temperature and the vector function u repre-
sents the fluid velocity. The initial data θ(0) ∈ L2(T2) and the force f ∈ Lp(T2) for some
p > 2/α are assumed to have zero average.

The wavenumber Λθ(t) is defined solely based on the structure of the equation, but
not on the force, regularity properties, or any known bounds on the solution. We prove
that if two complete weak solutions θ1, θ2 ∈ L∞((−∞,∞);L2) (i.e., lying on the global
attractor) coincide on frequencies below max{Λθ1 , Λθ2}, then θ1 ≡ θ2. While in the
subcritical and critical cases this wavenumber has uniform upper bounds, it may blow
up when the equation is supercritical. A bound on Λθ immediately provides determining
modes, which in some sense measure the number of degrees of freedom of the flow, or
resolution needed to describe a solution to the SQG equation.

The first result of finite dimensionality of a flow was obtained by Foias and Prodi for
the 2D Navier-Stokes equations (NSE) in [26], where it was shown that low modes control
high modes asymptotically as time goes to infinity. Then an explicit estimate on the number
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