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Statistical solutions and Onsager's conjecture

U. S. Fjordholm∗ E. Wiedemann†

October 12, 2017

Abstract

We prove a version of Onsager's conjecture on the conservation of energy for the
incompressible Euler equations in the context of statistical solutions, as introduced
recently by Fjordholm et al. [12]. As a byproduct, we also obtain an alternative proof
for the conservative direction of Onsager's conjecture for weak solutions, under a weaker
Besov-type regularity assumption than previously known.

Dedicated to Edriss S. Titi on the occasion of his 60th birthday.

1 Introduction

We consider the d-dimensional incompressible Euler equations: Find a function v = (v1, . . . , vd) :
R+ ×D → Rd and a function p : R+ ×D → R such that

∂tv +
∑

k

∂xk(vvk) +∇p = 0 x ∈ D, t > 0

∇ · v = 0 x ∈ D, t > 0

v(0, x) = v0(x) x ∈ D.

(1.1)

Here and below, the summation limits, when not speci�ed, are always from k = 1 to k = d.
The initial data v0 is assumed to lie in L2(D). The spatial parameter x takes values in a
set D, which we will take as either Rd or the (d-dimensional) torus Td for simplicity1. The
temporal domain is [0, T ] for some T > 0.

By a solution of the Euler equations we will mean a weak solution of (1.1), i.e. a function
v ∈ L2

loc

(
[0, T ]×D;Rd

)
such that

∫

R+

∫

D

v∂tϕ+
∑

k

vvk∂xkϕ+ p∇ϕdxdt+

∫

D

v0(x)ϕ(0, x) dx = 0 (1.2)

for all ϕ ∈ C∞c ([0, T )× Rd), as well as satisfying the divergence free condition in the sense
of distributions.
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1On domains with boundaries, one can show the local version of the energy equality with almost no

further e�ort, but in order to deduce from this also the global conservation of energy one requires some
assumption of continuity at the boundary in addition to one of the usual Besov-type regularity assumptions.
For a �rst result in this direction see [1].
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