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h i g h l i g h t s

• The superimposition of deterministic and fractal stochastic components is studied.
• Deviations from the expected energy by scale describe the deterministic features.
• A Bayesian technique able to characterize both components is proposed.
• The method is applied to economic and physiological data.
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a b s t r a c t

In the past few decades, it has been recognized that 1/f fluctuations are ubiquitous in nature. The most
widely used mathematical models to capture the long-term memory properties of 1/f fluctuations have
been stochastic fractal models. However, physical systems do not usually consist of just stochastic fractal
dynamics, but they often also show some degree of deterministic behavior. The present paper proposes a
model based on fractal stochastic and deterministic components that can provide a valuable basis for the
study of complex systemswith long-term correlations. The fractal stochastic component is assumed to be
a fractional Brownian motion process and the deterministic component is assumed to be a band-limited
signal. We also provide a method that, under the assumptions of this model, is able to characterize the
fractal stochastic component and to provide an estimate of the deterministic components present in a
given time series. The method is based on a Bayesian wavelet shrinkage procedure that exploits the self-
similar properties of the fractal processes in the wavelet domain. This method has been validated over
simulated signals and over real signals with economical and biological origin. Real examples illustrate
how our model may be useful for exploring the deterministic–stochastic duality of complex systems, and
uncovering interesting patterns present in time series.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In many physical systems when measuring a physical quantity
along time, we often obtain a time series which seems to fluctuate
in a non-periodic, apparently random manner, with complex cor-
relations that extend over all measured time scales. These long-
term dependencies are specially evident in the frequency domain
and they regularly appear over wide ranges of frequencies as a 1/f
process, that is, a random process with a power spectral density
S(f ) = constant/|f |γ , where γ receives the name of spectral in-
dex [1]. A large number of physical and informational systems from
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biology, chemistry, geology, meteorology, economics or engineer-
ing, among others, exhibit such behavior [2]. A 1/f process has a
long and dynamic memory; the effects of an event persists in time,
and the influence of recent events is added to and gradually super-
sedes the influence of distant events [3]. This long-memory prop-
erty accounts for the behavior of informational systems, which ex-
hibit an evolving increase in structure and complexity by accumu-
lating information, combining the strong influence of past events
with the influence of current events. Another important feature of
1/f processes is the lack of a characteristic time scale, exhibiting
statistical self-similar properties. This permits the explanation of
the thermodynamic behavior of a large number of physical sys-
tems, based on the concurrence of multiple processes with relax-
ation times comparable to all time scales of interest. Moreover,
this feature is particularly expected in biological systems, since the
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existence of a preferred frequency of operation would seriously
limit the reaction capability of a living system [4,5].

Despite the existence of effective mathematical tools for study-
ing such 1/f processes, modeling systems with long-term depen-
dencies remains a challenge. This is mainly because real systems
do not usually consist of merely stochastic or deterministic com-
ponents, but they often manifest both random and predictable
features. The need to integrate stochastic and deterministic ap-
proaches has already been considered by means of a wide variety
of techniques. The Langevin formalism [6–8] (equivalent to the
Fokker–Planck formulation) describes the time evolution of a sys-
tem in terms of a deterministic and a stochastic driving force. In
most practical applications, the free coefficients of the dynamical
equations are directly estimated from the time series. Langevin
equations provide a powerful method for characterizing systems
in which noise is an integral part of the dynamics, but they usually
require two strong properties: stationarity and Markovianity. Re-
cent advances have enabled the application of Langevin equations
to time series that do not meet some of these requirements. For
example, Langevin-like modeling has been successfully applied
to non-stationary conditions by means of additional measurable
properties [9,10] or by assuming a parametric model in which the
parameters themselves evolve according to stationary stochastic
processes [11]. On the other hand and concerning Markovianity,
consider for example [12], in which Langevin-like equations have
been properly estimated in the presence of observational noise
spoiling the Markov properties of the experimental time series.

The Coarse Graining Spectral Analysis technique (CGSA) [13]
assumes that the physical quantity under study is a sum of a
fractal stochastic model (a fractional Brownian motion) and a sum
of stationary sinusoids, and aims to isolate the fractal stochastic
spectrum in order to calculate more precisely the parameters that
characterize it. Thus, it does not provide any temporal estimate of
the harmonic or of the fractal stochastic signals. Furthermore, real
data often behave as non-stationary. As it will become apparent
below, our method may be seen as a generalization of the CGSA
that provides temporal estimates and addresses the issue of non-
stationarity.

Explicit modeling and non-stationary approaches like [14–16]
are only possible when the mechanisms that underlie the gener-
ation of the signal are, at least to some extent, understood. This
makes possible building precisemathematicalmodels that account
for the behavior of the observed time series. In our opinion, it is
through explicit model building that we gain a truly deeper under-
standing about how a system behaves. However, model building
is a complicated task which usually requires many iterations. An
accurate characterization of the main stochastic and deterministic
features can help in taking modeling decisions.

The main purpose of this paper is to expedite model build-
ing by providing reliable simultaneous estimates of the deter-
ministic and stochastic components present in a system where
the deterministic–stochastic interactions may be ignored. We ex-
pect these estimates to be useful for exploring the deterministic–
stochastic duality in complex systemswith long-term correlations,
providing a valuable starting point towards the development of
interpretable models. To this end, we first propose a realistic, yet
simple model, that is able to capture key features of these sort of
complex systems. From this model we have developed a method
that enables us to characterize the fractal stochastic component
and to provide an estimate of the deterministic components of the
system.

The remainder of the paper is organized as follows. In Section 2,
we describe the specific model in which we are going to focus and
its statistical properties. We also propose a method that exploits
these statistical properties to estimate the deterministic and fractal
stochastic parts of a signal. In Sections 3–5, we apply our method
on simulated data and real data with economical and biological
origin, respectively. Finally, the results of this paper are discussed
and some conclusions are given in Section 6.

2. Time series with stochastic and deterministic contributions

2.1. The stochastic contribution

Let us consider a complex physical system characterized by the
temporal series Y . We assume that Y is the result of the superpo-
sition of a stochastic series B and some band-limited deterministic
signal x:

Y [n] = x[n] + B[n] n = 1, . . . ,N. (1)

For the moment, we will focus on the stochastic part and we will
assume that our signal Y [n] can be approximated by Y [n] = B[n],
where B[n] is an evolutionary random process with long-term
dependencies. Therefore, its present behavior is strongly influ-
enced by its entire history. According to a convenient modeling
approach [1], long-memory signals are treated as realizations of
one of two processes: either a fractional Gaussian noise (fGn), or a
fractional Brownian motion (fBm). Since the increments of a non-
stationary fBm signal yield a stationary fGn signal, wewill focus on
the fBm model without any loss of generality.

The fBm is a stochastic non-stationary process with zero mean
that is fully characterized by its variance σ 2 and the so-calledHurst
exponent 0 < H < 1. Due to the relationship between fGn and
fBm, fGn models are also fully specified by these two parameters.
We denote a fBm model using B(t) and a discrete fBm (dfBm) by
B[k] = B(k · Ts), being Ts the sampling period of the signal [17].
The non-stationary behavior of the dfBm signals is apparent when
considering its covariance [18]:

Cov(B[k], B[l]) =
σ 2T 2H

s

2
(|k|2H + |l|2H − |k − l|2H ). (2)

Although non-stationary, dfBm does have stationary incre-
ments B[k+d]−B[k], and its probability properties only depend on
the lag d, the exponent H and σ 2. This increment process follows
a discrete fGn (dfGn) distribution [17], and it is self-similar in the
sense that, for any a > 0, B fulfills

(B[k + a · d] − B[k]) ∼ aH (B[k + d] − B[k]), (3)

where ∼ means ‘‘distributed as’’.
In summary, two important features appear as relevant when

analyzing dfBm signals: non-stationarity, which demands for a
time-dependent analysis; and self-similarity, which demands for a
scale-dependent analysis. Wavelet analysis, which provides a time
and scale dependent method, seems to be a proper framework for
studying this kind of time series. The next section summarizes the
most important statistical properties of the dfBm wavelet coeffi-
cients.

2.2. Exploring self-similarity with wavelets

Let us assume that B is an infinite signal, so that we can ignore
border effects on the wavelet transform. The wavelet transform of
B decomposes the signal in terms of a set of oscillating functions
{ψj,l}, each of which is well localized in time around l and it is
related with a resolution level j. In the notation of this paper, the
jth resolution level is associated with the scale 2−j and thus, larger
j correspond to finer scales. Since the set of functions {ψj,l} are
generated by parameterizing the function ψ , the latter is called
mother wavelet. The wavelet decomposition of B is

B[n] =

∞∑
j=J

∑
l∈Z

wBj,l[n]ψj,l[n] +

∑
l∈Z

aBJ [n]φJ,l[n],

whereφJ,l[n] is the so-called scaling function (closely related to the
mother wavelet), wBj are the wavelet coefficients of the jth reso-
lution level, and aBJ are the approximation coefficients associated
with some Jth resolution level taken as reference level.
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