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h i g h l i g h t s

• Stability and bifurcation of lamellar and concentric localized equilibria are computed.
• A numerical eigenvalue problem is formulated to study stability for both morphological classes.
• Longwave instabilities of lamellar equilibria are found analytically.
• Structures may be stable or unstable depending on surface energies and composition.
• Bifurcations from lamellar to curved vesicle equilibria are observed.
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a b s t r a c t

This paper discusses localized equilibria which arise in copolymer–solvent mixtures. A free boundary
problem associated with the sharp-interface limit of a density functional model is used to identify
both lamellar and concentric domain patterns composed of a finite number of layers. Stability of these
morphologies is studied through explicit linearization of the free boundary evolution.

For the multilayered lamellar configuration, transverse instability is observed for sufficiently small
dimensionless interfacial energies. Additionally, a crossover between small and large wavelength insta-
bilities is observed depending on whether solvent–polymer or monomer–monomer interfacial energy is
dominant.

Concentric domain patterns resembling multilayered micelles and vesicles exhibit bifurcations
wherein they only exist for sufficiently small dimensionless interfacial energies. The bifurcation of large
radii vesicle solutions is studied analytically, and a crossover from a supercritical case with only one
solution branch to a subcritical case with two is observed. Linearized stability of these configurations
shows that azimuthal perturbation may lead to instabilities as interfacial energy is decreased.

© 2018 Elsevier B.V. All rights reserved.

0. Introduction

Block copolymers are molecularly bonded mixtures of two
or more distinct polymer species, which may exhibit microphase
segregation, wherein small domains of heterogeneous composition
form. In the presence of a partially immiscible third phase, the
mixture may also undergo macrophase segregation. The combined
effect of both types of phase segregation leads to a wide variety of
morphologies [1–6].

Many of the basic patterns which form in these systems can be
described as equilibria composed of alternating layers of polymer
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composition, surrounded by a solvent phase [7,8,3,6]. In this paper,
we study three morphological classes, shown in Fig. 1. The first of
these are flat structureswithmany layers, referred to here as lamel-
lar multilayers. These can be regarded as the multidimensional
extension of one dimensional equilibria. In addition, there are
two concentric equilibria types, which in analogy to amphiphilic
chemical systems will be referred to as micelles and vesicles. The
latter type has a solvent core, whereas the former does not.

This paper studies a dynamic free boundary problem which
arises as the sharp interface limit of a density functional model.
Density functional approaches have a long history in modeling
heterogeneous polymer mixtures (e.g. [9–11]), and are a natural
extension of the Cahn–Hilliard theory of phase separation [12].
The particular formulation we begin with was considered by Ohta
and Ito [3]. The corresponding free boundary problem may be
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Fig. 1. The three types of configurations studied in this paper. The number of alternating polymer domains N can be any integer ≥ 2.

regarded as an extension of both the classic Mullins–Sekerka
problem (e.g. [13]) and the two-phase free boundary evolution for
block copolymers formulated by Nishiura and Ohnishi [14].

Localized multilayered block copolymer morphologies have
been actively studied in recent years [15–20]. Ohta and Nono-
mura [17] performed numerical studies of the density functional
model used here and computed approximations to free energies
of flat and concentric equilibria. Lamellar equilibria in a sharp
interface model of copolymer–homopolymer blends were studied
by van Gennip and Peletier [19,20]. They rigorously establish the
existence of mass-conserving energy minimizers and study stabil-
ity through the second variation of the energy functional.

Concentric equilibria in block copolymer mixtures have also
been studied previously. Ren and Wei [16] rigorously established
the existence of radially symmetric patterns in a two phase model.
More recently, Avalos et al. [21] studied a density functional model
similar to the one discussed here. They numerically compute a
variety of equilibria, including concentric micelle-type patterns. In
addition, they compare their results to experimental observations
of similar structures (e.g. [22]).

The starting point for our analysis is a dynamic free boundary
problem which represents a singular limit of a density functional
model. Some aspects of this model and its derivation are discussed
in Section 1. In Section 2, the equilibrium lamellar multilayer
morphology is studied. Analytic evidence is presented for large
wavelength transverse instabilities. Stability with respect to arbi-
trary wavenumber perturbations is also studied by formulating a
finite dimensional eigenvalue problem. Concentric equilibria are
discussed in Section 3. A hybrid analytical–numerical shooting
method is used to compute equilibria and locate their bifurcations.
For themicelle case, two solution branchesmerge in a fold bifurca-
tion, whereas in the vesicle case the branch of large radii solutions
can be analytically shown to emerge from lamellar multilayer
equilibria. Azimuthal stability of concentric equilibria is studied by
formulating an eigenvalue problem analogous to the lamellar case.

1. Density functional models and their sharp interface limit

Density functional models for block copolymer mixtures con-
struct a free energy as a function of composition variables, here
φA, φB, and φS , corresponding to copolymer constituents A and B,
and a solvent phase S. One of these variables can be eliminated by
invoking the standard assumption of incompressibility φA + φB +

φS = 1, which leads to a convenient reformulation [17] employing
the variables

Φ = (1 − f )φA − f φB, Ψ = f φA + (1 − f )φB. (1)

The parameter f ∈ (0, 1) is the fraction of A-monomer relative to
the total polymer volume. It is assumed that these are finite, and it
follows that∫

Rd
Φ dx = 0. (2)

The resulting free energy functional can be written (in suitable
dimensionless variables) as

F =

∫
Rd
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The nonlocal term has an interaction kernel G(), which is taken to
be the Laplacian Green’s function here. The potentialW (Φ, Ψ ) has
minima at (Φ, Ψ ) = (0, 0), corresponding to pure solvent, and
(Φ, Ψ ) = (1 − f , f ) and (−f , 1 − f ), corresponding to pure A or
Bmonomer, respectively. Dynamics are built from the assumption
that diffusion is driven by gradients of the generalized chemical
potentials µ = δF/δΦ, ν = δF/δΨ , leading to

ϵΦt = ∆µ − ϵαΦ, µ ≡ −ϵ2∆Φ + WΦ (Φ, Ψ ) (4)

ϵΨt = ∆ν, ν ≡ −ϵ2∆Ψ + WΨ (Φ, Ψ ). (5)

While more general diffusive dynamics are possible, our primary
interest is in linear stability, which is a function of energy and not
kinetics.

1.1. Free boundary problem

The singular limit ϵ → 0 may be obtained by matched asymp-
totic expansions in the usual way (e.g. [13,14,23]). Some details
are provided in the Appendix for completeness. The result is a
free boundary problemwhich describes the evolution of interfaces
between three (open) domains ΩA, ΩB, ΩS , which correspond to
the threeminima ofW , (Φ0, Ψ0) = (0, 0), (1− f , f ) and (−f , 1− f ),
respectively. By virtue of (2), these subregions satisfy
|ΩA|

f
= |ΩA ∪ ΩB| =

|ΩB|

1 − f
. (6)

The normal interface velocities Vn are prescribed by the system

∆v =

{0, x ∈ ΩS
1 − f , x ∈ ΩA
−f , x ∈ ΩB

(7)

∆w = 0, x ∈ ΩS ∪ ΩA ∪ ΩB, (8)
v[Φ0]+− + w[Ψ0]+− = −κσpq, x ∈ ∂Ωpq, p, q ∈ {A, B, S}, (9)
[v]+

−
= 0 = [w]+

−
, (10)

Vn = −[∂v/∂n]+
−
/[Φ0]+− = −[∂w/∂n]+

−
/[Ψ0]+−. (11)

The notation []
+

− refers to the jump of values across the interface.
By convention, the normal to the interface will be oriented in the
arbitrarily prescribed + direction, so that the interface curvature
κ is positive if the phase corresponding to − is locally convex. In
some cases, [Ψ0]+− = 0, and the last equality in (11) is replaced
with [∂w/∂n]+

−
= 0.

The field variables v and w are the sharp interface, nondi-
mensional versions of chemical potentials µ and ν defined in
(4)–(5). As in the classical Cahn–Hilliard theory, the interface
motion (11) arises from a discontinuity of diffusive fluxes which
derive from gradients of chemical potentials. Notice that there are
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