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• Global computation of the center manifolds in the spatial circular restricted three-body problem.
• Formulation of variational theory related to Kustaanheimo–Stiefel regularization.
• Definition of suited geometric chaos indicators.
• Application to the Sun–Jupiter system.
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a b s t r a c t

The circular restricted three-body problem has five relative equilibria L1, L2, ..., L5. The invariant stable–
unstable manifolds of the center manifolds originating at the partially hyperbolic equilibria L1, L2 have
been identified as the separatrices for the motions which transit between the regions of the phase-space
which are internal or external with respect to the two massive bodies. While the stable and unstable
manifolds of the planar problem have been extensively studied both theoretically and numerically, the
spatial case has not been as deeply investigated. This paper is devoted to the global computation of
these manifolds in the spatial case with a suitable finite time chaos indicator. The definition of the chaos
indicator is not trivial, since the mandatory use of the regularizing Kustaanheimo–Stiefel variables may
introduce discontinuities in the finite time chaos indicators. From the study of such discontinuities, we
define geometric chaos indicators which are globally defined and smooth, and whose ridges sharply
approximate the stable and unstable manifolds of the center manifolds of L1, L2. We illustrate themethod
for the Sun–Jupiter mass ratio, and represent the topology of the asymptotic manifolds using sections and
three-dimensional representations.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The circular restricted three-body problem describes the mo-
tion of a massless body P in the gravitation field of two massive
bodies P1 and P2, called primary and secondary body respectively,
which rotate uniformly around their common center of mass. In
a rotating frame the problem has five equilibria, the so called
Lagrangian points L1, . . . , L5, which are the only known simple
solutions of the equations of motion of P:
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where the units of masses, lengths and time have been chosen so
that themasses of P1 and P2 are 1−µ andµ (µ ≤ 1/2) respectively,
their coordinates are (−µ, 0, 0) and (1− µ, 0, 0) and their revolu-
tion period is 2π ; we denoted by r1 =

√
(x + µ)2 + y2 + z2 and by

r2 =

√
(x − 1 + µ)2 + y2 + z2 the distances of P from P1, P2. As it
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is well known, Eqs. (1) have an integral of motion, the so—called
Jacobi constant, defined by:

C(x, y, z, ẋ, ẏ, ż) = x2 + y2 + 2
1 − µ

r1
+ 2

µ

r2
− ẋ2 − ẏ2 − ż2. (2)

Fixed values C of the Jacobi constant define level sets MC in the
phase-space, which project on the set:

ΠMC = {(x, y, z) ∈ R3
0 : x2 + y2 + 2

1 − µ

r1
+ 2

µ

r2
≥ C}

of the physical space:

R3
0 = {(x, y, z) ∈ R3

: (x, y, z) ̸= (−µ, 0, 0), (1 − µ, 0, 0)}.

The boundary BC ofΠMC separates the so called realm of possible
motions ΠMC from the realm of forbidden motions R3

0\ΠMC .
The Lagrangian equilibria L1, . . . , L5 are critical points for the

Jacobi constant; the values C1, C2, . . . , C5 of C at the Lagrangian
equilibria L1, . . . , L5 correspond to topological changes of the set
BC . In particular, for C > C2 the space R3

0 is disconnected by BC
into a region of motions which contains the massive bodied P1, P2
and an external region; for C < C2 the realm of possible motions
is connected; in particular, for values of C slightly smaller than
C2, the connection between the internal and external regions is
realized through a bottleneck of BC , at whose extremities we find
the Lagrangian points L1 and L2. The transit ofmotions through this
bottleneck is guided by the stable–unstablemanifolds of the center
manifolds W c

1 ,W c
2 originating at the equilibria L1, L2, which are

partially hyperbolic, specifically they are saddle×center×center.
The center manifold theorem (see, for example, [1]) grants the
existence of two four-dimensional center manifolds W c

i , i = 1, 2.
Since the restriction of the Jacobi constant to each W C

i has a strict
extremum at the equilibrium point Li, from the general results
of [1] we obtain that for suitably small values of C − Ci the sets
W c

C,i = W c
i ∩ MC are unique, are diffeomorphic to a three-sphere,

are invariant with respect to the flow of the three-body problem
for any time t ∈ R. Their stable and unstable manifolds have
the topology of hypertubes obtained from the product of a three-
sphere with a half line; we will call them spherical hypertube
manifolds. The spherical hypertube manifolds act as separatrices
for the transit of motions through the bottlenecks of BC connecting
the region of internal and the region of external motions, see [2–4]
(for the planar three-body problem) and [5,6] (for the spatial three-
body problem). This fact is a consequence of the structure of the
local stable–unstable manifolds of W c

C,i in a small neighborhood
Ui: motions with initial conditions in Ui approaching the center
manifold from the right-hand side (left-hand side respectively)
‘bounce back’ if they are on one side of the separatrix, while they
transit to the left-hand side (right-hand side respectively) if they
are on the other side of the separatrix.

The structure of the global stable and unstablemanifolds ofW c
C,i

is muchmore complicate than the structure of the local manifolds:
the exponential compressions, expansions and rotations occurring
near the center manifolds are alternated to circulations around
both primaries. Global representations of these surfaces have been
obtained for several sample values of µ and C in the planar cir-
cular restricted three-body problem, see for example [4,7,8]. The
computation of the stable–unstable manifolds in the planar case
has several advantages with respect to the spatial case. First, in
the planar case, the level set of the center manifolds obtained
by fixing the value of the Jacobi constant in a suitable small left
neighborhood of Ci is made of a periodic orbit, the horizontal
Lyapunov orbit of L1 or L2. To compute their asymptotic manifolds
one canuse one of the severalmethods of computation of the stable
and unstable manifolds of periodic orbits, for example the flow
continuation of the local manifolds, the parametrization method,
or the recent method based on chaos indicators (see [7] and the

references therein).Moreover, the phase-space of the planar three-
body problem is four dimensional, and by fixing the value of the Ja-
cobi constant we obtain a three dimensional space. The stable and
unstable manifolds of the horizontal Lyapunov orbits are there-
fore two-dimensional surfaces in a three-dimensional space; their
global phase-space development has been graphically visualized
in [8]. For the spatial case, in the literature there are computations
of stable and unstable manifolds of orbits in the center manifolds,
like the halo and Lissajous orbits, obtained from high order semi-
analytical expansions (see [9]), or using set oriented procedures
(see [10]).

Different methods to compute stable and unstable manifolds of
invariant objects use chaos indicators. The finite time chaos indi-
cators, such as the finite time Lyapunov exponent (FTLE hereafter)
and the fast Lyapunov indicator (FLI hereafter), originally defined
in [11,12], have been used in the last decade to compute numerical
approximations of the stable and unstable manifolds of equilibria,
periodic orbits, and the so called Lagrangian coherent structures of
turbulent flows of manymodel systems (see for example [13–24]).
In [7] we have shown that the traditional finite time chaos indi-
cators can fail completely the detection of the stable or unstable
manifolds of hyperbolic equilibria or periodic orbits. The problem
has been solved with a major modification to the chaos indicator,
by taking into account for its computation only the contributions
from the variational equations due to a neighborhood of the hyper-
bolic fixed point or periodic orbit; i.e. by filtering out all the other
contributions. The extension of the method introduced in [7,8] to
the spatial restricted three-body problem requires additional ma-
jormodifications for three reasons: (i) the centermanifoldW s

C,i has
dimension 3 in a 5-dimensional reduced phase-space (while in the
planar problem is just a periodic orbit in a 3 dimensional reduced
phase-space) and does not contain only periodic or quasi-periodic
orbits; (ii) the regularization of the spatial problem is geometrically
more complicate than the planar Levi-Civita regularization; (iii) the
efficient computation of the filtered chaos indicator is intrinsically
more complicate for a center manifold than for a periodic orbit. In
this paperwe solve these problemsby considering a family of chaos
indicators, modified as follows. First, we construct a neighborhood
Ui of the center manifold W c

C,i where the local stable and unstable
manifolds are represented as Cartesian graphs and a hyperbolic
Birkhoff normal formof some convenient order is defined; then,we
localize the global stable manifold W s

C,i by exploiting at the same
time the peculiar growth of the tangent vectors close to W c

C,i, and
the scattering fromUi of themotionswith initial conditions outside
the local stable manifold. Both properties are coded by a filtered
finite time chaos indicator, fast Lyapunov indicator or finite time
Lyapunov indicator, whose ridges provide the stable manifold1

W s
C,i.
The definition of smooth chaos indicators for the spatial three-

body problem is non trivial since Eqs. (1) are singular for (x, y, z) =

(−µ, 0, 0) or (1 − µ, 0, 0). Smooth indicators will be defined by
using the Kustaanheimo–Stiefel regularization which has been
originally introduced to regularize the spatial problem (KS here-
after, [25,26]). The use of regularizing transformations, with their
analytic and computational advantages (see, for example, [27,28])
appears to us mandatory to compute long pieces of the spherical
hypertube manifolds of L1, L2, especially close to the secondary
body. In this spirit, the Levi-Civita transformation (LC hereafter),
which regularizes the equations ofmotion of the planar three-body
problem [29], has been used in [7,8] to define chaos indicators
whose ridges approximate the stable and unstablemanifolds of the
horizontal Lyapunov orbits of L1, L2. Even if the KS transformation
is the natural extension of the LC transformation, the regularization

1 As usual, the unstable manifold W u
C,i is obtained by computing the stable

manifold of the inverse flow.
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