Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Pseudo-simple heteroclinic cycles in \mathbb{R}^4

Pascal Chossat^a, Alexander Lohse^{b,*}, Olga Podvigina^c

^a Université Côte d'Azur - CNRS, Parc Valrose, 06108 Nice cedex, France

^b Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany

^c Institute of Earthquake Prediction Theory and Mathematical Geophysics, 84/32 Profsoyuznaya St, 117997 Moscow, Russian Federation

HIGHLIGHTS

- Finite subgroups of O(4) admitting pseudo-simple heteroclinic cycles are identified.
- Existence of periodic orbits close to pseudo-simple cycles is investigated.
- Subgroups of $O(4) \setminus SO(4)$ admitting f.a.s. pseudo-simple cycles are identified.

ARTICLE INFO

Article history: Received 3 March 2017 Received in revised form 4 December 2017 Accepted 16 January 2018 Available online 2 February 2018 Communicated by J. Dawes

Keywords: Equivariant dynamics Quaternions Heteroclinic cycle Periodic orbit Stability

ABSTRACT

We study *pseudo-simple* heteroclinic cycles for a Γ -equivariant system in \mathbb{R}^4 with finite $\Gamma \subset O(4)$, and their nearby dynamics. In particular, in a first step towards a full classification – analogous to that which exists already for the class of *simple* cycles – we identify all finite subgroups of O(4) admitting pseudo-simple cycles. To this end we introduce a constructive method to build equivariant dynamical systems possessing a robust heteroclinic cycle. Extending a previous study we also investigate the existence of periodic orbits close to a pseudo-simple cycle, which depends on the symmetry groups of equilibria in the cycle. Moreover, we identify subgroups $\Gamma \subset O(4)$, $\Gamma \not \subseteq SO(4)$, admitting fragmentarily asymptotically stable pseudo-simple heteroclinic cycles. (It has been previously shown that for $\Gamma \subset SO(4)$ pseudo-simple cycles generically are completely unstable.) Finally, we study a generalized heteroclinic cycle, which involves a pseudo-simple cycle as a subset.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A heteroclinic cycle is an invariant set of a dynamical system comprised of equilibria ξ_1, \ldots, ξ_M and heteroclinic orbits κ_i from ξ_i to ξ_{i+1} , $i = 1 \dots M$ with the convention M + 1 = 1. For several decades these objects have been of keen interest to the nonlinear science community. A heteroclinic cycle is associated with intermittent dynamics, where the system alternates between states of almost stationary behaviour and phases of quick change. It is well-known that a heteroclinic cycle can exist robustly in equivariant dynamical systems, i.e. persist under generic equivariant perturbations, namely when all heteroclinic orbits are saddlesink connections in (flow-invariant) fixed-point subspaces. Robust heteroclinic cycles, their nearby dynamics and attraction properties have been thoroughly studied, especially in low dimensions. See [1,2] for a general overview. In \mathbb{R}^3 , there are comparatively few possibilities for heteroclinic dynamics and these are rather wellunderstood. In \mathbb{R}^4 , the situation is significantly more involved. We

https://doi.org/10.1016/j.physd.2018.01.008 0167-2789/© 2018 Elsevier B.V. All rights reserved. therefore consider systems

$$\dot{x} = f(x),\tag{1}$$

where $f : \mathbb{R}^4 \to \mathbb{R}^4$ is a smooth map that is equivariant with respect to the action of a finite group $\Gamma \subset O(4)$, i.e.

$$f(\gamma x) = \gamma f(x) \quad \text{for all } x \in \mathbb{R}^4, \ \gamma \in \Gamma.$$
(2)

In this setting, much attention has been paid to so-called *simple* cycles, see e.g. [3–6], for which (i) all connections lie in twodimensional fixed-point spaces $P_j = \text{Fix}(\Sigma_j)$ with $\Sigma_j \subset \Gamma$, and (ii) the cycle intersects each connected component of $P_{j-1} \cap P_j \setminus \{0\}$ at most once. This definition was introduced by [6], who also suggested several examples of subgroups of O(4) that admit such a cycle (in the sense that there is an open set of Γ -equivariant vector fields possessing such an invariant set). The classification of simple cycles was completed in [7,8] (for homoclinic cycles) and finally in [9] by finding all groups $\Gamma \subset O(4)$ admitting such a cycle. In [9] it was also discovered that the original definition of simple cycles from [6] implicitly assumed a condition on the isotypic decomposition of \mathbb{R}^4 with respect to the isotropy subgroup

^{*} Corresponding author.

E-mail address: alexander.lohse@math.uni-hamburg.de (A. Lohse).

of an equilibrium, see Section 2.1 for details. This prompted them to define *pseudo-simple* heteroclinic cycles as those satisfying (i) and (ii) above, but not this implicit condition.

It is the primary aim of the present paper to carry out a systematic study of pseudo-simple cycles in \mathbb{R}^4 , by establishing a complete list of all groups $\Gamma \subset O(4)$ that admit such a cycle. This is done in a similar fashion to the classification of simple cycles in [9], by using a quaternionic approach to describe finite subgroups of O(4). First examples for pseudo-simple cycles were investigated in [9,10]. The latter of those also addressed stability issues: it was shown that a pseudo-simple cycle with $\Gamma \subset SO(4)$ is generically completely unstable, while for the case $\Gamma \not\subset SO(4)$ a cycle displaying a weak form of stability, called *fragmentary asymptotic stability*, was found. A fragmentarily asymptotically stable (f.a.s.) cycle has a positive measure basin of attraction that does not necessarily include a full neighbourhood of the cycle [11]. We extend this stability study by showing an example of group $\Gamma \not\subset SO(4)$ which admits an asymptotically stable generalized heteroclinic cycle and pseudosimple subcycles that are f.a.s. Moreover, we look at the dynamics near a pseudo-simple cycle and discover that asymptotically stable periodic orbits may bifurcate from it. Whether or not this happens depends on the isotropy subgroup \mathbb{D}_k , $k \ge 3$ of equilibria comprising the cycle. The case k = 3 was already considered in [10]. We illustrate our more general results by numerical simulations for an example with $\Gamma = (\mathbb{D}_4 | \mathbb{D}_2; \mathbb{D}_4 | \mathbb{D}_2)$ in the case k = 4.

This paper is organized as follows. Section 2 recalls background information on (pseudo-simple) heteroclinic cycles and useful properties of quaternions as a means to describe finite subgroups of O(4). Then, in Section 3 we give conditions that allow us to decide whether or not such a group $\Gamma \subset O(4)$ admits pseudosimple heteroclinic cycles. Section 4 contains the statement and proofs of Theorems 1 and 2, which use the previous results to list all subgroups of O(4) admitting pseudo-simple heteroclinic cycles. The proof of Theorem 1 relies on properties of finite subgroups of SO(4) that are given in the Appendix. In Section 5 we investigate the existence of asymptotically stable periodic orbits close to a pseudo-simple cycle, depending on the symmetry groups \mathbb{D}_k , of equilibria. The cases k = 3, 4 and $k \ge 5$ are covered by Theorems 3 and 4, respectively. In Section 6 we employ the ideas of the previous sections to provide a numerical example of a pseudosimple cycle with a nearby attracting periodic orbit. Finally, in Section 7 for a family of subgroups $\Gamma \not\subset SO(4)$ we construct a generalized heteroclinic cycle (i.e., a cycle with multidimensional connection(s)) and prove conditions for its asymptotic stability in Theorem 5. This cycle involves as a subset a pseudo-simple heteroclinic cycle, that can be fragmentarily asymptotically stable. Section 8 concludes and identifies possible continuations of this study. The appendix contains additional information on subgroups of SO(4) that is relevant for the proof of Theorem 1.

2. Background

Here we briefly review basic concepts and terminology for pseudo-simple heteroclinic cycles and the quaternionic approach to describing subgroups of SO(4) as needed in this paper.

2.1. Pseudo-simple heteroclinic cycles

In this subsection we give the precise framework in which we investigate robust heteroclinic cycles and the associated dynamics. Given an equivariant system (1) with finite $\Gamma \subset O(4)$ recall that for $x \in \mathbb{R}^4$ the *isotropy subgroup of x* is the subgroup of all elements in Γ that fix *x*. On the other hand, given a subgroup $\Sigma \subset \Gamma$ we denote by Fix (Σ) its fixed point space, i.e. the space of points in \mathbb{R}^4 that are fixed by all elements of Σ .

Let ξ_1, \ldots, ξ_M be hyperbolic equilibria of a system (1) with stable and unstable manifolds $W^{s}(\xi_{j})$ and $W^{u}(\xi_{j})$, respectively. Also, let $\kappa_j \subset W^u(\xi_j) \cap W^s(\xi_{j+1}) \neq \emptyset$ for j = 1, ..., M be connections between them, where we set $\xi_{M+1} = \xi_1$. Then the union of equilibria $\{\xi_1, \ldots, \xi_M\}$ and connecting trajectories $\{\kappa_1, \ldots, \kappa_M\}$ is called a heteroclinic cycle. Following [5] we say it is structurally *stable* or *robust* if for all *j* there are subgroups $\Sigma_i \subset \Gamma$ such that ξ_{i+1} is a sink in $P_j := \text{Fix}(\Sigma_j)$ and κ_j is contained in P_j . We also employ the established notation $L_i := P_{i-1} \cap P_i = \text{Fix}(\Delta_i)$, with a subgroup $\Delta_i \subset \Gamma$. As usual we divide the eigenvalues of the Jacobian $df(\xi_i)$ into radial (eigenspace belonging to L_i), contracting (belonging to $P_{i-1} \ominus L_i$), expanding (belonging to $P_i \ominus L_i$) and transverse (all others), where we write $X \ominus Y$ for a complementary subspace of Y in X. In accordance with [5] our interest lies in cycles where

- (H1) dim $P_i = 2$ for all j,
- (H2) the heteroclinic cycle intersects each connected component of $L_i \setminus \{0\}$ at most once.

Then there is one eigenvalue of each type and we denote the corresponding contracting, expanding and transverse eigenspaces of $df(\xi_i)$ by V_i , W_i and T_i , respectively. In [9] it is shown that under these conditions there are three possibilities for the unique Δ_i -isotypic decomposition of \mathbb{R}^4 :

- (1) $\mathbb{R}^4 = L_j \oplus V_j \oplus W_j \oplus T_j$ (2) $\mathbb{R}^4 = L_j \oplus V_j \oplus \widetilde{W}_j$, where $\widetilde{W}_j = W_j \oplus T_j$ is two-dimensional (3) $\mathbb{R}^4 = L_j \oplus W_j \oplus \widetilde{V}_j$, where $\widetilde{V}_j = V_j \oplus T_j$ is two-dimensional.

Here \oplus denotes the orthogonal direct sum. This prompts the following definition.

Definition 1 ([9]). We call a heteroclinic cycle satisfying conditions (H1) and (H2) above simple if case 1 holds true for all j, and pseudosimple otherwise.

Remark 1. In case 1 the group Δ_j acts as \mathbb{Z}_2 on each onedimensional component other than L_j and $\Delta_j \cong \mathbb{D}_2$ (which is always the case if $\Gamma \subset SO(4)$) or $\Delta_j \cong (\mathbb{Z}_2)^3$. In cases 2 and 3 the group acts on the two-dimensional isotypic component as a dihedral group \mathbb{D}_k in \mathbb{R}^2 for some $k \ge 3$ and $\Delta_j \cong \mathbb{D}_k = \langle \rho_j, \sigma_j \rangle$ (always for $\Gamma \subset SO(4)$) or $\Delta_j \cong \mathbb{D}_k \times \mathbb{Z}_2$. For $\underline{\Gamma} \subset SO(4)$ in case 2 the element ρ_i acts as a k-fold rotation on \widetilde{W}_i and trivially on $P_{j-1} = L_j \oplus V_j$, while σ_j acts as -I on $V_j \oplus T_j$ and trivially on $L_i \oplus W_j$. In case 3 the element ρ_j acts as a k-fold rotation on V_j and trivially on $P_i = L_i \oplus W_i$, while σ_i acts as -I on $W_i \oplus T_i$ and trivially on $L_i \oplus V_i$.

Remark 2. The existence of a two-dimensional isotypic component implies that in case 2 the contracting and transverse eigenvalues are equal $(c_j = t_j)$ and the associated eigenspace is two-dimensional, while in case 3 the expanding and transverse eigenvalues are equal $(e_i = t_i)$ and the associated eigenspace is two-dimensional. Hence, we say that $df(\xi_i)$ has a multiple contracting or expanding eigenvalue in cases 2 or 3, respectively.

We are interested in identifying all subgroups of O(4) that admit pseudo-simple heteroclinic cycles in the following sense. For simple cycles this task has been achieved step by step in [6-9].

Definition 2 ([9]). We say that a subgroup Γ of O(n) admits (pseudo-)simple heteroclinic cycles if there exists an open subset of the set of smooth Γ -equivariant vector fields in \mathbb{R}^n , such that all vector fields in this subset possess a (pseudo-)simple heteroclinic cycle.

In order to establish the existence of a heteroclinic cycle it is sufficient to find a sequence of connections $\xi_1 \rightarrow \cdots \rightarrow \xi_{m+1} =$ $\gamma \xi_1$ with some finite order $\gamma \in \Gamma$, that is minimal in the sense that no $i, j \in \{1, ..., m\}$ satisfy $\xi_i = \gamma' \xi_j$ for any $\gamma' \in \Gamma$.

Download English Version:

https://daneshyari.com/en/article/8256230

Download Persian Version:

https://daneshyari.com/article/8256230

Daneshyari.com