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h i g h l i g h t s

• Noise vanishing limits of stationary measures of Fokker–Planck equations are studied.
• Invariance of the limit measures to the ODE system is shown.
• Local concentrations of stationary measures in the vicinity of a local attractor or repeller are characterized.
• Noise stabilization of a local attractor and de-stabilization of a local repeller are shown with respect to particular noises.
• Noise de-stabilization of a repelling equilibrium is shown with respect to general noises.
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a b s t r a c t

In this paper, we study limit behaviors of stationary measures of the Fokker–Planck equations associated
with a system of ordinary differential equations perturbed by a class of multiplicative noise including
additive white noise case. As the noises are vanishing, various results on the invariance and concentration
of the limit measures are obtained. In particular, we show that if the noise perturbed systems admit
a uniform Lyapunov function, then the stationary measures form a relatively sequentially compact
set whose weak∗-limits are invariant measures of the unperturbed system concentrated on its global
attractor. In the case that the global attractor contains a strong local attractor, we further show that there
exists a family of admissible multiplicative noises with respect to which all limit measures are actually
concentrated on the local attractor; and on the contrary, in the presence of a strong local repeller in the
global attractor, there exists a family of admissible multiplicative noises with respect to which no limit
measure can be concentrated on the local repeller. Moreover, we show that if there is a strongly repelling
equilibrium in the global attractor, then limit measures with respect to typical families of multiplicative
noises are always concentrated away from the equilibrium. As applications of these results, an example
of stochastic Hopf bifurcation and an example with non-decomposable ω-limit sets are provided.

Our study is closely related to the problem of noise stability of compact invariant sets and invariant
measures of the unperturbed system.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Regarded as a physical model, a dynamical system generated
from ordinary differential equations is often subject to noise per-
turbations either from its surrounding environment or from intrin-
sic uncertainties associated with the system. Analyzing the impact
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of noise perturbations on the dynamics of the system thenbecomes
a fundamental issue with respect to both modeling and dynamics.

There have been many studies toward this dynamics issue
using either a trajectory-based or a distribution-based approach.
The trajectory-based approach is often adopted under the frame-
work of random dynamical systems, i.e., skew-product flows with
ergodic measure-preserving base flows. By assuming vanishing
noise at a reference equilibrium, noise perturbations of essential
dynamics of a dynamical system are studied under the random
dynamical system framework with respect to problems such as
noise perturbations of invariant manifolds [1–4], normal forms
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[5–8], and stochastic bifurcations (see [5] and references therein).
For a system of ordinary differential equations subject to white
noise perturbations vanishing at a reference equilibrium, we refer
the reader to [9] for some study of stochastic stability of the
equilibrium (see also [10] for similar studies in infinite dimension).

With respect to general noise perturbations, the distribution-
based approach is useful and seemly necessary to adopt under
both frameworks of random dynamical systems and Itô stochastic
differential equations. Due to its essential differences from deter-
ministic dynamical systems, much less is known in this direction
comparing with cases using the trajectory-based approach. For
some import pioneer works on noise perturbations of dynamical
systems on a compact manifold from the viewpoint of distribu-
tions, we refer the reader to [11,12] for stochastic stability of flows
on a 2-torus or a periodic cycle, to [13] for stochastic stability
of essentially a finite number of equilibria and periodic cycles
by introducing large deviation theory, to [14–17] for stochastic
stability of SRB measures, and to [18] for some global stochastic
stability characterizations.

In this paper, we adopt the distribution-based approach to
study the impact of white noises on basic dynamics of a system
of ordinary differential equations in an Euclidean space. More
precisely, we consider a system of ordinary differential equations

ẋ = V (x), x ∈ U ⊂ Rn, (1.1)

where U is a connected open set which can be bounded, un-
bounded, or the entire Rn, and V = (V i) ∈ C(U,Rn). We assume
throughout the paper that (1.1) generates a local flow ϕt on U . The
generality of domain U does allow a wide range of applications
because many physical models (e.g., those concerning populations
and concentrations) are not necessarily defined in the entire Rn.
Adding general multiplicative (i.e., spatially non-homogeneous)
including additive (i.e., spatially homogeneous) white noise per-
turbations, we obtain the following Itô stochastic differential equa-
tions (SDE in short)

dx = V (x)dt + G(x)dW , x ∈ U ⊂ Rn, (1.2)

where W is a standard m-dimensional Brownian motion for some
integer m ≥ n, and G = (g ij)n×m is a matrix-valued function on
U , called noise coefficient matrix. For generality, we assume that
g ij

∈ W 1,p
loc (U), i = 1, 2, . . . , n, j = 1, 2, . . . ,m, for some fixed

constant p > n.
The stochastic differential equations (1.2) arise naturally as a

non-isolated physical system subject to noise perturbations from
its surrounding environments, inwhich the impact of noises on dy-
namics is often physically measured in term of distributions. They
can also arise naturally from the study of a large scale deterministic
but seemingly stochastic system, for instance a so-called meso-
scopic system which is partially structured but contains intrinsic
uncertainties in a fast time scale due to high complexity, large
degree of freedom, lack of full knowledge of mechanisms, the need
for organizing a large amount of data, etc. Under some exponen-
tial mixing assumptions on the fast dynamics, such a mesoscopic
system can have a stochastic reduction of the form (1.2) over
any finite time interval in which V represents the structured field
and G encompasses all dynamical uncertainties (see e.g., [19,20]).
Very recently, such stochastic reduction theory is systematically
extended to the case of partially hyperbolic fast–slow systems
(see e.g., [21–23]). It has been argued for a mesoscopic system
that in the case of sufficiently high uncertainty, a trajectory-based
approach using either deterministic or randomdynamicsmodeling
would not provide much information to its dynamical description.
Instead, a distribution-based approach using stochastic differential
equations like (1.2) is necessary to adopt in order to synthesize the
typical patterns of dynamics (see [24] and references therein).

An important distribution-based approach for studying diffu-
sion process generated by (1.2) is to use its associated Fokker–
Planck equation (also called Kolmogorov forward equation)⎧⎪⎨⎪⎩

∂u(x, t)
∂t

= LAu(x, t), x ∈ U, t > 0,

u(x, t) ≥ 0,
∫
U
u(x, t)dx = 1,

(1.3)

where A = (aij) =
GG⊤

2 , called the diffusion matrix, and LA is the
Fokker–Planck operator defined as

LAg(x) = ∂2
ij (a

ij(x)g(x)) − ∂i(V i(x)g(x)), g ∈ C2(U).

We note that aij ∈ W 1,p
loc (U), i, j = 1, 2, . . . , n. It is well-known

that if the stochastic differential equation (1.2) generates a (local)
diffusion process in U (e.g., when both V and G are locally Lipschitz
in U), then its transition probability density function, if it exists,
is actually a (local) fundamental solution of the Fokker–Planck
equation (1.3).

In the above and also through the rest of the paper, we use
short notions ∂i =

∂
∂xi

, ∂2
ij =

∂2

∂xi∂xj
, and we also adopt the usual

summation convention on i, j = 1, 2, . . . , nwhenever applicable.
Long time behaviors of solutions of the Fokker–Planck equation

(1.3) is governed by the stationary Fokker–Planck equation⎧⎨⎩LAu = ∂2
ij (a

iju) − ∂i(V iu) = 0,

u(x) ≥ 0,
∫
U
u(x)dx = 1,

(1.4)

which, in the weak form, becomes⎧⎪⎨⎪⎩
∫
U
LAf (x)u(x)dx = 0, for all f ∈ C∞

0 (U),

u(x) ≥ 0,
∫
U
u(x)dx = 1,

(1.5)

whereC∞

0 (U) denotes the space ofC∞ functions onU with compact
supports and

LA = aij∂2
ij + V i∂i

is the adjoint Fokker–Planck operator corresponding toA. Solutions
of (1.5) are called weak stationary solutions of (1.3) or stationary
solutions corresponding to LA. More generally, one considers a
measure-valued stationary solutionµA of the Fokker–Planck equa-
tion (1.3), called a stationary measure of the Fokker–Planck equation
(1.3) or a stationary measure corresponding to LA, which is a Borel
probability measure satisfying∫

U
LAf (x)dµA(x) = 0, for all f ∈ C∞

0 (U). (1.6)

If a stationary measure µA is regular, i.e., dµA(x) = uA(x)dx for
some density function uA ∈ C(U), then it is clear that uA is
necessarily a weak stationary solution of (1.3), i.e, it satisfies (1.5).
Conversely, according to the regularity theorem in [25], if (aij) is
everywhere positive definite in U , then any stationary measure
corresponding to LA must be regular with positive density func-
tion lying in W 1,p

loc (U). In the case that (1.2) generates a diffusion
process on U , it is well-known that any invariant measure of
the diffusion process is necessarily a stationary measure of the
Fokker–Planck equation (1.3), but the converse need not be true.
However, under some mild conditions a stationary measure of the
Fokker–Planck equation (1.3) is always a sub-invariant measure
of some generalized diffusion process (see [26–28] for discussions
in this regard in particular with respect to the uniqueness of
stationary measures and their invariance). In this sense, stationary
measures of (1.3) may be regarded as generalizations of invariant
measures of a classical diffusion process.
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