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h i g h l i g h t s

• The existence of Hopf and Hopf-Hopf bifurcations is proven for all n ≥ 4.
• An analytical formula is derived for the first Lyapunov coefficient of the Hopf bifurcation.
• Periodic attractors have the physical interpretation of travelling waves.
• The Hopf-Hopf bifurcation acts as an organising center and leads to multistability.
• The dynamics beyond the first bifurcation depends on n, but without clear pattern.
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a b s t r a c t

In this paper we study the dynamics of the monoscale Lorenz-96 model using both analytical and
numerical means. The bifurcations for positive forcing parameter F are investigated. The main analytical
result is the existence of Hopf or Hopf–Hopf bifurcations in any dimension n ≥ 4. Exploiting the
circulant structure of the Jacobianmatrix enables us to reduce the first Lyapunov coefficient to an explicit
formula from which it can be determined when the Hopf bifurcation is sub- or supercritical. The first
Hopf bifurcation for F > 0 is always supercritical and the periodic orbit born at this bifurcation has
the physical interpretation of a travelling wave. Furthermore, by unfolding the codimension two Hopf–
Hopf bifurcation it is shown to act as an organising centre, explaining dynamics such as quasi-periodic
attractors and multistability, which are observed in the original Lorenz-96 model. Finally, the region of
parameter values beyond the first Hopf bifurcation value is investigated numerically and routes to chaos
are described using bifurcation diagrams and Lyapunov exponents. The observed routes to chaos are
various but without clear pattern as n → ∞.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Setting of the problem

In his 1996 paper [1], Edward Lorenz introduced twomodels to
study fundamental issues regarding the predictability of the atmo-
sphere and weather forecasting. The so-called monoscale Lorenz-
96 model is defined by the equations

ẋj = xj−1(xj+1 − xj−2) − xj + F , j = 1, . . . , n, (1a)

where we take the indices modulo n by the following ‘boundary
condition’

xj−n = xj+n = xj, (1b)
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resulting in a model with circulant symmetry. For the multiscale
model, which will not be discussed in this paper, the reader is
referred to [1]. The model (1) can be interpreted as a model for
atmospheric waves travelling along a circle of constant latitude.
Lorenz interpreted the variables xj as values of some meteorolog-
ical quantity (e.g., temperature, pressure, or vorticity) in n equal
sectors of a latitude circle, where the index j plays the role of
longitude. The continuous parameter F represents external forcing
and can be used as a bifurcation parameter.

Although the Lorenz-96 model is not derived from physi-
cal principles it still has features which are commonly found
in geophysical models: forcing, dissipation and energy preserv-
ing quadratic terms. Moreover, unlike the traditional Lorenz-63
model [2] which has only one positive Lyapunov exponent, the
Lorenz-96 model has multiple positive Lyapunov exponents for
suitable choices of the parameters F and n. For those reasons, and
for the simplicity of the equations, the model is important and
widely used nowadays and sometimes even called ‘‘the archetype
of large deterministic systems displaying chaotic behaviour’’ [3] or
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Table 1
Recent papers with applications of the monoscale Lorenz-96 model (1) and the main values of n and F that were used.
Almost all values are chosen in the chaotic domain (F = 8) of dimension n = 36 or 40.

Reference Application n F

Danforth & Yorke [12] Making forecasts 40 8
Dieci et al. [13] Approximating Lyapunov exponents 40 8
Gallavotti & Lucarini [14] Non-equilibrium ensembles 32 ≥8
Hansen & Smith [15] Operational constraints 40 8
De Leeuw et al. [16] Data assimilation 36 8
Lorenz & Emanuel [17] Optimal sites 40 8
Lorenz [18] Designing chaotic models 30 10, 15 (2.5, . . . , 40)
Lorenz [1] Predictability 36 (4) 8 (15, 18)
Lucarini & Sarno [19] Ruelle linear response theory 40 8
Ott et al. [20] Data assimilation 40, 80, 120 8
Stappers & Barkmeijer [21] Adjoint modelling 40 8
Sterk et al. [22] Predictability of extremes 36 8
Sterk & Van Kekem [23] Predictability of extremes 4, 7, 24 11.85, 4.4, 3.85
Trevisan & Palatella [24] Data assimilation 40, 60, 80 8

Fig. 1. The period of the periodic attractor of the Lorenz-96 model detected for F = 1.2 plotted as a function of the dimension n. Note that the period converges to
approximately 4.5 as n → ∞. See Fig. 4 for a comparison with the theoretical period at the Hopf bifurcation.

‘‘a hallmark representative of nonlinear dynamical systems’’ [4].
The applications of the Lorenz-96 model are broad and range from
geophysical applications like data assimilation and predictability
to studies in spatiotemporal chaos. Table 1 gives an overview of
recent papers in which the Lorenz-96 has been used together with
the values of the parameters that were used.

In contrast to its importance, only a few studies have inves-
tigated the dynamics of this model. In [5], the high-dimensional
chaotic dynamics has been explored by means of the fractal di-
mension. A recent study on patterns of order and chaos in themul-
tiscale model has reported the existence of regions with standing
waves [4]. Bifurcation diagrams in low dimensions of the Lorenz-
96 model have been studied in [6], although the emphasis of their
workwas onmethods to visualise bifurcations bymeans of spectral
analysis, rather than exploring the dynamics itself. The previous
works already revealed an extraordinarily rich structure of the
dynamical behaviour of the Lorenz-96 model for specific values of
n. However, there has been no systematic study of the dynamics
of this model yet. In this paper we fill this gap by studying the
dynamical nature of the Lorenz-96model in greater detail and give
analytical proofs of some basic properties for all dimensions and
of the existence of Hopf and Hopf–Hopf bifurcations. These results
are complemented by numerical explorations, that includes the
dynamics beyond these bifurcations as well.

The Lorenz-96 model is a family of dynamical systems parame-
terised by the discrete parameter n ∈ Nwhich gives the dimension
of their state space. This setup is analogous to a discretised partial
differential equation. In fact, in some works the Lorenz-96 model
is interpreted as such [7,8]. In [9], a discretised quasi-geostrophic

model for the atmosphere was studied. In particular, they numer-
ically observed that the parameter value at which the first Hopf
bifurcation occurs typically increases with the truncation order of
their discretisation method. In pseudo-spectral discretisations of
Burgers’ equation [10] qualitative differences in dynamics were
observed depending on whether the dimension of state space was
even or odd. We may expect similar phenomena for the Lorenz-96
model. Hence, in this paper we focus in particular on the question
which quantitative and qualitative features of the dynamics will
persist for (almost) all n ∈ N. Answers to these questions may be
helpful in selecting appropriate values of n and F for the specific
applications listed in Table 1. For example, there is a direct relation
between the dimension of attractors and the statistics of extreme
events [11]. Although the study of this paper is unable to provide
the entire picture, it offers a partial dynamical inventory using both
analytical and numerical means.

1.2. Sketch of the results

The Lorenz-96 model (1) has an equilibrium solution given by
xF = (F , . . . , F ) for all n ≥ 1 and F ∈ R. Clearly, for F = 0 this equi-
librium is stable. Numerical simulations show that for F = 1.2 the
dynamics of the model is periodic for all n ≥ 4. This suggests that
for 0 < F < 1.2 a supercritical Hopf bifurcation occurs at which
the equilibrium xF loses its stability and gives birth to a periodic
attractor. Fig. 1 shows that the period of the periodic attractor at
F = 1.2 is an oscillating function of the dimension n. Observe that
the oscillations decaywith n and that the period seems to converge
to a value of approximately 4.5. The spatiotemporal properties of
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