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a b s t r a c t

In this work, we study the wave propagation in a recently proposed acoustic structure, the locally
resonant granular crystal. This structure is composed of a one-dimensional granular crystal of hollow
spherical particles in contact, containing linear resonators. The relevantmodel is presented and examined
through a combination of analytical approximations (based on ODE and nonlinear map analysis) and
of numerical results. The generic dynamics of the system involves a degradation of the well-known
traveling pulse of the standard Hertzian chain of elastic beads. Nevertheless, the present system is richer,
in that as the primary pulse decays, secondary ones emerge and eventually interfere with it creating
modulated wavetrains. Remarkably, upon suitable choices of parameters, this interference ‘‘distills’’ a
weakly nonlocal solitary wave (a ‘‘nanopteron’’). This motivates the consideration of such nonlinear
structures through a separate Fourier space technique,whose results suggest the existence of such entities
not only with a single-side tail, but also with periodic tails on both ends. These tails are found to oscillate
with the intrinsic oscillation frequency of the out-of-phase motion between the outer hollow bead and
its internal linear attachment.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Dynamics of one-dimensional granular chains has attracted
substantial interest from the researchers of quite different sci-
entific areas [1–24] due to their exciting dynamical properties.
These chains support the formation of highly robust, strongly
localized and genuinely traveling elastic stress waves. The exis-
tence of traveling waves was originally proved in [7] using the
variational approach of [25], yet no information was given on their
profile. Their single pulse character (in the strain variables) was
rigorously shown in [26], following the approach of [27], and the
doubly exponential character of their spatial decay in the absence
of precompression was established. Earlier work on the basis of
longwavelength approximations and numerical computations had
conjectured that the waves were genuinely compact (spanning a
finite number of elements) [1].

Recent studies [9–18] in the area have been mainly concerned
with the effect of various types of structural inhomogeneities in-
duced in the granular chain. The latter leads to a modulation of
the solitary waves, as well as to new kinds of breathing modes
produced either robustly [12–14,28,29] or transiently [30]. Wave
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propagation in tapered and decorated granular chains has been
extensively studied in [9–11] both analytically and numerically.
The approximations developed in these works for the estimation
of themaximal pulse velocity recorded on each one of the granules
along with its propagation through such inhomogeneous granular
chains have demonstrated a good correspondence of the analytic
predictions with the numerical simulations. Additional experi-
mental, computational and analytical studies were devoted to the
dynamics of the periodic granular chains (e.g. diatomic chains,
granular containers, etc.) under various conditions of initial pre-
compression [12–18]. Dynamics of primary pulses in the non-
compressed granular chain perturbed by a weak dissipation has
been considered in [19–24]. These, in turn, shed light on the evolu-
tion of the primary pulses in the dissipative, 1D granularmedia and
provide some qualitative theoretical (in some cases in connection
with experiments [23]) estimations for modeling the dissipation
in the chain as well as depicting the rate of decay of the primary
pulse. A systematic theoretical attempt to capture the (decaying)
evolution of a primary pulse in the granular chain subject to on-site
perturbation has been provided in the extensive study of [31].

In the present paper we study a novel acoustic structure which
has been recently considered in some experimental and theoretical
studies [32–34], the locally resonant granular crystal. The funda-
mental unit cell of these periodic systems is made of an outer mass
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Fig. 1. Scheme of the model under consideration.

(hollow spherical shell and an inner mass connected by a linear
spring). Our principal aim is to examine the dynamics of this novel
class of chains, as regards their ability to propagate travelingwaves
in the presence of these internal resonators. What we generally
observe in this setting is a decay of the principal pulse (in the strain
variables), due to its coupling to the internal variables. The rate of
such decay of a primary pulse can be fully captured analytically.
Perhaps even more importantly, we show that, depending on the
parameters of the internal resonator (i.e. coupling stiffness and
mass), the response can range from the abovementioned (continu-
ous) decay, to the formation of a genuinely traveling primary pulse.
The latter scenario is examined in close detail and is identified
as a case example of a ‘‘nanopteron’’ solution, whose tail carries
an oscillation with the intrinsic linear frequency of the system (of
the relative motion of the outer and inner mass). To the best of
our knowledge, and although such weakly nonlocal solitary waves
have been studied extensively in a series of examples in physical
sciences and engineering [35], this is only the second example of
the reporting of such a nanopteronic solution in granular systems.
The potential observation of such solutions in granular systems has
been earlier suggested based on the numerical observations of [29],
while this possibility has been proposed theoretically a decade ago
for FPU lattices in the work of [36]. This motivates us to further
examine the problem using the methodology of [27]. As a result
of this study we illustrate that it is possible in fact to produce
nanoptera with oscillating tails on both ends of the principal pulse.
These results pave the way for a previously unexplored class of
solutions in these ‘‘mass-in-mass’’ systems and render them espe-
cially intriguing candidates for experimental investigations.

Our presentation is structured as follows. In Section 2, we offer
the basic setup and the corresponding theoretical model. In Sec-
tion 3, we provide the analytical approach that captures the typical
(and systematic) decay of a primary pulse in the ‘‘mass-in-mass’’
(hereafter abbreviated as MiM) system. In Section 4, we test these
predictions numerically, obtaining good agreement with the ana-
lytical predictions, but also shedding light on how a nanopteronic
solution can be seen to spontaneously emerge. In Section 5, we
propose a different analytical–numerical approach for capturing
such solutions and offer a proof-of-principle confirmation of their
existence (with tails on both sides of the principal pulse). Finally, in
Section 6, we summarize our results and present our conclusions,
as well as a number of directions for future study. Lastly, in the
appendix we provide some technical details about the form of the
traveling wave in the homogeneous granular chain that are used
in our theoretical approach for capturing the decay of the primary
pulse in the MiM setting.

2. Physical model

In the present study we consider the uncompressed, one-
dimensional, locally resonant granular crystal composed of hollow
elastic spheres in contact, containing linear resonators, as this is
illustrated in Fig. 1. According to [37], the contact interaction of two
hollow spheres depends strongly on the thickness of the spherical
shells. However, for relatively thick spherical shells, the interaction
contact follows the Hertzian contact law [1].

The governing equations of motion can then be written as
follows,
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Here Ui is the displacement of the ith sphere, while ui is the
displacement of the smallmass, linearly coupled attachment inside
the ith sphere, ri is the radius of the sphere, Mi is the mass of
the sphere; and E∗

= E/2
(
1 − µ2

)
; E is the elastic (Young’s)

modulus and µ is the Poisson’s ratio of the sphere. We note that
the interaction force between the neighboring elements is given by
F = (4/3) E∗

√
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2∆

3/2, where Ri is bead radius (assumed implicitly
to be uniform in the above expression i.e., independent of i) and∆
is their relative displacement. Moreover, the (+) subscripts in (1)
and (3) indicate that only non-negative values of the expressions
in parentheses are considered, i.e., the interaction is tensionless.
We should also mention in passing that a mathematically similar
systemwith (isolated) external resonators (a so-calledmass-with-
mass setting) has recently been proposed in [38]. It is noteworthy
that despite the mathematical equivalence of these two settings,
their experimental realizations are quite different.

The system nondimensionalization is performed as follows
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It is important to note that in the present study we assume (with
one caveat to be explained below) that the outer and inner masses
are uniform all through the chain (i.e. Ri = R,Mi = M,mi = m).

Substituting (2) into (1) we end up with the following, non-
dimensional set of equations governing the system dynamics

Xi,ττ =

[
(Xi−1 − Xi)

3/2
+ − (Xi − Xi+1)

3/2
+

]
+ κ̃ (xi − Xi)

νxi,ττ = −κ̃ (xi − Xi) .
(3)

To make the further analysis of (3) somewhat simpler it is con-
venient to introduce the coordinates of relative displacements
(i.e., strains) for both outer and inner masses,

∆i = Xi − Xi+1 (4)

di = xi − xi+1. (5)

Substituting (4) and (5) into (3) we obtain the following set of
equations,

∆i,ττ = ∆
3/2
(i−1),+ − 2∆3/2

(i),+ +∆
3/2
(i+1),+ + κ̃ (di −∆i)

νdi,ττ = −κ̃ (di −∆i) .
(6)

The goal of the present study is to examine the wave propagation
along the contacts of the outer masses (which contribute to highly
nonlinear dynamics) in the presence of the internal mass attach-
ments. We assume that the coupling between the internal mass
and the outer sphere is linear and weak such that κ̃ is treated as a
small system parameter κ̃ = ε. We anticipate that as the primary
pulse propagates down the chain, it is possible for it to ‘‘transfer’’
energy to the internal, linear attachments, storing it in the form
of potential energy and thus depriving the original pulse from its
initial kinetic energy. This, in turn, is expected to yield a decay
of the amplitude of the primary pulse, which we now consider in
three distinct asymptotic limits, namely: (1) ν ≪ 1, (2) ν = O(1)
and (3) ν ≫ 1.
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