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h i g h l i g h t s

• Stability analysis is presented for an inhomogeneous floating body.
• Bifurcation diagrams and basins of attraction reveal complex stability behavior.
• Static experiments are conducted to verify numerical results.
• Dynamic experiments are conducted to investigate potential well hopping.
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a b s t r a c t

This paper examines the bifurcation and stability behavior of inhomogeneous floating bodies, specifically
a rectangular prismwith asymmetric mass distribution. A nonlinear model is developed to determine the
stability of the upright and tilted equilibrium positions as a function of the vertical position of the center
of mass within the prism. These equilibria positions are defined by an angle of rotation and a vertical
position where rotational motion is restricted to a two dimensional plane. Numerical investigations are
conducted using path-following continuation methods to determine equilibria solutions and evaluate
stability. Bifurcation diagrams and basins of attraction that illustrate the stability of the equilibrium
positions as a function of the vertical position of the center of mass within the prism are generated.
These results reveal complex stability behavior with many coexisting solutions. Static experiments are
conducted to validate equilibria orientations against numerical predictions with results showing good
agreement. Dynamic experiments that examine potential well hopping behavior in a waveflume for
various wave conditions are also conducted.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A classic engineering rule of thumb states that a floating object
can be made stable in the upright position if its center of mass is
located below the centroid of the displaced fluid, or the center of
buoyancy. This fact can be proven by showing that the center of
buoyancy shifts to the right for clockwise rotation about the center
ofmass and to the left for counter-clockwise rotationwhich results
in a restoring torque for both cases. More sophisticated analysis
has been conducted in the field of Naval Architecture to show
that this upright position can remain stable even if the center of
gravity is located above the center of buoyancy by introducing the
concept of a metacenter [1]. Themetacenter is defined as the point
of intersection between a vertical line drawn through the center of
buoyancywhen the body is tilted and a vertical line drawn through
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the original center of buoyancy at equilibrium. It has been shown
that a floating object will remain stable even if the center of mass
is located above the center of buoyancy as long as the metacenter
is located above the center of mass [2]. The analysis to prove this
linearizes the system about its equilibrium point to determine
whether small perturbationswill result in an instability commonly
called capsizing. This criterion has been well documented and is
extremely useful for Naval Engineers in designing hull shapes,
prescribing maximum payloads, and constructing ballasts [3].

While this work can be applied to inform design decisions,
scientists and engineers have examined the stability of floating
bodies on amore fundamental level in attempt to gain deeper phe-
nomenological insights. These studies have looked to investigate
the equilibrium and stability behavior of various symmetric float-
ing objects and have been particularly interested in the emergence
of non-trivial tilted equilibrium positions [4–6]. Gilbert investi-
gated the equilibria of homogeneous cylinders and tetrahedrons
for various specific density and geometric ratios to illustrate the
emergence of tilted equilibrium positions [7]. Rorres expanded on
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this work by conducting similar studies on the more complicated
paraboloid [8]. Erdos et al. then progressed the field even further
by showing how the same non-trivial equilibria states could be
realized for inhomogeneous shapes by simply shifting the location
of the object’s center of mass [9].

These studies offer useful insights into the behavior of floating
bodies, however little investigation has been done to examine sce-
narios in which multiple non-trivial equilibrium solutions coexist
simultaneously. Intuition suggests that tilted equilibrium solutions
should be possible for scenarios in which the center of mass is lo-
cated off the prism’s centerline, however, it is not intuitivewhether
this is possible for a symmetric mass distribution and, if so, which
of these solutions would be stable. Furthermore, if situations can
be identified where coexisting stable equilibrium positions exist,
would it be possible to transition back and forth between stable
orientations through dynamic wave excitation? If such conditions
could be determined, this behavior could be manipulated for a
host of hydrodynamic engineering applications [10]. This paper
seeks to answer these questions by examining the bifurcation
characteristics of a floating rectangular prism (hereafter referred
to as a buoy) to identify and study coexisting tilted equilibrium
positions in floating bodies. In particular, this paper develops a
nonlinear mathematical model to determine the static stability of
the upright and tilted equilibria positions as a function of the ver-
tical position of the center of mass within the buoy, validates the
numerical results through experimental studies, and then applies
this knowledge to examine the buoy’s behavior under dynamic
wave excitation.

The remainder of this paper is organized as follows. Section 2
defines the geometry and fundamental variables used to describe
the problem. In doing so, six distinct regions that correspond to
scenarios where different combinations of corners are submerged
below thewaterline are identified [6]. Section 3 uses this geometry
to derive the governing equations of motion and explain the key
parameters involved. Section 4 then describes how these equations
are used to determine equilibrium positions and stability through
numerical methods. Results are presented for four particular cases
with qualitatively different bifurcation behaviors. Finally, Section 5
describes experimental tests that successfully validate numerical
equilibrium results for the static case and examine responses
where the buoy oscillations hop back and forth between potential
wells under dynamic wave conditions.

2. Important geometry

Fig. 1 shows a schematic of an upright and tilted rectangular
prism along with its important geometry. As illustrated, five fun-
damental geometric parameters are used to describe the prism: its
height a, width b, length ℓ, mass m, and vertical distance from the
base to its center of mass k. Analyzing what happens when k is
varied for a prism with a fixed set of parameters a, b, ℓ, and m is
this paper’s primary focus. From these parameters, the submerged
depth f , can be calculated as

f =
m

ℓbρ
, (1)

where ρ represents the density of the surrounding fluid. Beyond
these geometric parameters, additional variables are required to
describe the position of the buoy as it undergoes planar motion.
The buoy’s angle of rotation from the upright, vertical displace-
ment, and horizontal displacement are denoted by φ, z, and y
while corresponding equilibrium positions are given as φ̃, z̃, and ỹ,
respectively. These values are described using an inertial reference
frame, (x̂, ŷ, ẑ), with corresponding coordinates x, y, and z, and a
body fixed reference frame (x̂′, ŷ ′, ẑ ′), with corresponding coordi-
nates x′, y′, and z ′, where the origin for both coordinate systems is
initially located at the buoy’s center of mass.

Fig. 1. Geometry in Region 1 (see Fig. 2 for Regions) where (x̂, ŷ, ẑ) and (x̂′ , ŷ ′ , ẑ ′)
denote the inertial and body fixed reference frames, respectively.

Fig. 2. Schematic of the floating buoy shown in different orientations which shows
that a different set of continuous equations is required when different corners are
submerged.

As shown in Fig. 2, the motion of the buoy can be separated
into six distinct regions depending on the combination of cor-
ners that are submerged. As the buoy rotates and translates, new
corners become submerged and the differing geometry alters the
governing equations of motion [6]. The result is that the buoy’s
trajectories can be broken into six piecewise smooth regions, each
of which are subject to unique equations of motion and physical
constraints. The same methods are used to produce solutions over
all six regions with three equations adapting as a result of the
changing geometry. It is also worth noting that Regions 2 and 5
will look different for the case where f

a > 0.5 (i.e. three vertices
will be submerged instead of one), however the math remains
unchanged. For conciseness, this paper only derives the equations
for Region 1 although the same geometric approach outlined here
can be used to derive the equations for the five remaining Regions.
The complete set of governing equations are used later to generate
bifurcation diagrams and can be found in the Appendix.

In describing the system’s geometry, the submergedportion can
be broken into two parts: a right triangular prism formed by the
waterline and a line perpendicular to the buoy’s opposite side and a
rectangular prism of height h. This geometry is shown in Fig. 3. The
value of h can be obtained by determining the vertical component
of the position vector from the body fixed origin to the pointwhere
the waterline and side of the buoy intersect, z ′(φ, z, b

2 ), and adding
this value to the distance between the body fixed origin and the
base of the buoy k. Hence, h can be represented as

h = k + z ′

(
φ, z,

b
2

)
. (2)

Therefore to determine h it is necessary to write an equation to
define z ′(φ, z, y′), a point on the waterline as a function of φ, z, and
y′ [6]. This is done using the point-slope formula

z ′
− z ′

0 = m(y′
− y′

0) (3)

where the reference point along the waterline and slope can be
expressed as

z ′

0 = r cosφ, y′

0 = r sinφ, r = f − z − k, m = − tanφ. (4)
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